Suppr超能文献

人类序列学习多尺度过程的大脑特征。

Brain signatures of a multiscale process of sequence learning in humans.

机构信息

Cognitive Neuroimaging Unit, CEA DRF/JOLIOT, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France.

Université Paris Descartes, Sorbonne Paris Cité, Paris, France.

出版信息

Elife. 2019 Feb 4;8:e41541. doi: 10.7554/eLife.41541.

Abstract

Extracting the temporal structure of sequences of events is crucial for perception, decision-making, and language processing. Here, we investigate the mechanisms by which the brain acquires knowledge of sequences and the possibility that successive brain responses reflect the progressive extraction of sequence statistics at different timescales. We measured brain activity using magnetoencephalography in humans exposed to auditory sequences with various statistical regularities, and we modeled this activity as theoretical surprise levels using several learning models. Successive brain waves related to different types of statistical inferences. Early post-stimulus brain waves denoted a sensitivity to a simple statistic, the frequency of items estimated over a long timescale (habituation). Mid-latency and late brain waves conformed qualitatively and quantitatively to the computational properties of a more complex inference: the learning of recent transition probabilities. Our findings thus support the existence of multiple computational systems for sequence processing involving statistical inferences at multiple scales.

摘要

提取事件序列的时间结构对于感知、决策和语言处理至关重要。在这里,我们研究了大脑获取序列知识的机制,以及连续的大脑反应是否反映了在不同时间尺度上逐步提取序列统计信息的可能性。我们使用脑磁图(MEG)测量了人类在暴露于具有各种统计规律的听觉序列时的大脑活动,并使用几种学习模型将这种活动建模为理论上的惊讶水平。与不同类型的统计推断相关的连续脑波。刺激后早期的脑波表示对一种简单统计量的敏感性,即对长时间尺度上项目频率的估计(习惯化)。中期和晚期的脑波在定性和定量上都符合更复杂推断的计算特性:最近转移概率的学习。因此,我们的研究结果支持存在多个涉及多个尺度统计推断的序列处理计算系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验