Suppr超能文献

通过基于图神经网络的消费者食品成分检测和替代,助力粮食安全和可持续发展。

Aiding food security and sustainability efforts through graph neural network-based consumer food ingredient detection and substitution.

机构信息

Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK.

出版信息

Sci Rep. 2023 Nov 1;13(1):18809. doi: 10.1038/s41598-023-44859-0.

Abstract

Understanding precisely what is in food products is not always straightforward due to food fraud, differing labelling regulations, naming inconsistencies and the hierarchical nature of ingredients. Despite this, the need to detect and substitute ingredients in consumer food products is far-reaching. The cultivation and production of many ingredients is unsustainable, and can lead to widespread deforestation and biodiversity loss. Understanding the presence and replaceability of these ingredients is an important step in reducing their use. Furthermore, certain ingredients are critical to consumer food products, and identifying these ingredients and evaluating supply-chain resilience in the event of losing access to them is vital for food security analysis. To address these issues, we first present a novel machine learning approach for detecting the presence of unlabelled ingredients. We then characterise the unsolved problem of proposing viable food substitutions as a directed link prediction task and solve it with a graph neural network (GNN).

摘要

由于食品欺诈、不同的标签规定、命名不一致以及成分的层次性,准确了解食品产品中的成分并不总是那么简单。尽管如此,检测和替代消费者食品产品中的成分的需求还是很广泛的。许多成分的种植和生产都是不可持续的,可能导致大规模的森林砍伐和生物多样性丧失。了解这些成分的存在和可替代性是减少其使用的重要一步。此外,某些成分对消费者食品产品至关重要,因此,确定这些成分并评估在无法获得这些成分的情况下供应链的弹性,对于食品安全分析至关重要。为了解决这些问题,我们首先提出了一种用于检测未标记成分存在的新机器学习方法。然后,我们将提出可行的食品替代品的未解决问题描述为有向链路预测任务,并使用图神经网络 (GNN) 来解决它。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67c7/10620152/76254880ec6b/41598_2023_44859_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验