Shirai Sola S, Seneviratne Oshani, Gordon Minor E, Chen Ching-Hua, McGuinness Deborah L
Rensselaer Polytechnic Institute, Troy, NY, United States.
IBM T. J. Watson Research Center, Yorktown Heights, NY, United States.
Front Artif Intell. 2021 Jan 25;3:621766. doi: 10.3389/frai.2020.621766. eCollection 2020.
People can affect change in their eating patterns by substituting ingredients in recipes. Such substitutions may be motivated by specific goals, like modifying the intake of a specific nutrient or avoiding a particular category of ingredients. Determining how to modify a recipe can be difficult because people need to 1) identify which ingredients can act as valid replacements for the original and 2) figure out whether the substitution is "good" for their particular context, which may consider factors such as allergies, nutritional contents of individual ingredients, and other dietary restrictions. We propose an approach to leverage both explicit semantic information about ingredients, encapsulated in a knowledge graph of food, and implicit semantics, captured through word embeddings, to develop a substitutability heuristic to rank plausible substitute options automatically. Our proposed system also helps determine which ingredient substitution options are "healthy" using nutritional information and food classification constraints. We evaluate our substitutability heuristic, diet-improvement ingredient substitutability heuristic (DIISH), using a dataset of ground-truth substitutions scraped from ingredient substitution guides and user reviews of recipes, demonstrating that our approach can help reduce the human effort required to make recipes more suitable for specific dietary needs.
人们可以通过替换食谱中的食材来改变他们的饮食模式。这种替换可能是出于特定的目标,比如调整特定营养素的摄入量或避免某类特定的食材。确定如何修改食谱可能很困难,因为人们需要:1)确定哪些食材可以有效地替代原来的食材;2)弄清楚这种替换在他们特定的情况下是否“有益”,这可能需要考虑过敏、单个食材的营养成分以及其他饮食限制等因素。我们提出一种方法,利用食品知识图谱中封装的关于食材的显式语义信息以及通过词嵌入捕获的隐式语义,来开发一种可替换性启发式方法,以自动对合理的替代选项进行排名。我们提出的系统还利用营养信息和食品分类约束来帮助确定哪些食材替换选项是“健康的”。我们使用从食材替换指南和食谱用户评论中抓取的真实替换数据集,对我们的可替换性启发式方法——饮食改善食材可替换性启发式方法(DIISH)进行评估,结果表明我们的方法有助于减少为使食谱更适合特定饮食需求而需要的人力。