Suppr超能文献

间充质干细胞来源的线粒体增强细胞外基质衍生移植物用于修复神经缺损

Mesenchymal Stem Cell-Derived Mitochondria Enhance Extracellular Matrix-Derived Grafts for the Repair of Nerve Defect.

作者信息

Bai Jun, Yu Bingbing, Li Chaochao, Cheng Haofeng, Guan Yanjun, Ren Zhiqi, Zhang Tieyuan, Song Xiangyu, Jia Zhibo, Su Tianqi, Tao Benzhang, Gao Haihao, Yang Boyao, Liang Lijing, Xiong Xing, Zhou Xingyu, Yin Lan, Peng Jiang, Shang Aijia, Wang Yu

机构信息

Department of Neurosurgery, General Hospital of Chinese People Liberty Army, No. 28 Fuxing Road, Beijing, 100853, P. R. China.

Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China.

出版信息

Adv Healthc Mater. 2024 Jan;13(3):e2302128. doi: 10.1002/adhm.202302128. Epub 2023 Nov 16.

Abstract

Peripheral nerve injuries (PNI) can lead to mitochondrial dysfunction and energy depletion within the affected microenvironment. The objective is to investigate the potential of transplanting mitochondria to reshape the neural regeneration microenvironment. High-purity functional mitochondria with an intact structure are extracted from human umbilical cord-derived mesenchymal stem cells (hUCMSCs) using the Dounce homogenization combined with ultracentrifugation. Results show that when hUCMSC-derived mitochondria (hUCMSC-Mitos) are cocultured with Schwann cells (SCs), they promote the proliferation, migration, and respiratory capacity of SCs. Acellular nerve allografts (ANAs) have shown promise in nerve regeneration, however, their therapeutic effect is not satisfactory enough. The incorporation of hUCMSC-Mitos within ANAs has the potential to remodel the regenerative microenvironment. This approach demonstrates satisfactory outcomes in terms of tissue regeneration and functional recovery. Particularly, the use of metabolomics and bioenergetic profiling is used for the first time to analyze the energy metabolism microenvironment after PNI. This remodeling occurs through the enhancement of the tricarboxylic acid cycle and the regulation of associated metabolites, resulting in increased energy synthesis. Overall, the hUCMSC-Mito-loaded ANAs exhibit high functionality to promote nerve regeneration, providing a novel regenerative strategy based on improving energy metabolism for neural repair.

摘要

周围神经损伤(PNI)可导致受影响微环境中线粒体功能障碍和能量消耗。目的是研究移植线粒体重塑神经再生微环境的潜力。采用玻璃匀浆法结合超速离心从人脐带间充质干细胞(hUCMSCs)中提取结构完整的高纯度功能性线粒体。结果表明,当hUCMSC来源的线粒体(hUCMSC-Mitos)与雪旺细胞(SCs)共培养时,可促进SCs的增殖、迁移和呼吸能力。脱细胞神经同种异体移植物(ANAs)在神经再生方面已显示出前景,然而,其治疗效果仍不够令人满意。将hUCMSC-Mitos整合到ANAs中有可能重塑再生微环境。这种方法在组织再生和功能恢复方面显示出令人满意的结果。特别是,首次使用代谢组学和生物能量分析来分析PNI后的能量代谢微环境。这种重塑通过增强三羧酸循环和调节相关代谢物来实现,从而增加能量合成。总体而言,负载hUCMSC-Mito的ANAs具有促进神经再生的高功能性,为基于改善能量代谢的神经修复提供了一种新的再生策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c078/11468562/f45e7732d1a3/ADHM-13-2302128-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验