Suppr超能文献

基于定量图像特征和机器学习的脑动静脉畸形转归预测。

Quantitative image signature and machine learning-based prediction of outcomes in cerebral cavernous malformations.

机构信息

Department of Radiology, Mayo Clinic, Rochester, MN, United States.

Department of Radiology, Mayo Clinic, Rochester, MN, United States.

出版信息

J Stroke Cerebrovasc Dis. 2024 Jan;33(1):107462. doi: 10.1016/j.jstrokecerebrovasdis.2023.107462. Epub 2023 Nov 4.

Abstract

PURPOSE

There is increasing interest in novel prognostic tools and predictive biomarkers to help identify, with more certainty, cerebral cavernous malformations (CCM) susceptible of bleeding if left untreated. We developed explainable quantitative-based machine learning models from magnetic resonance imaging (MRI) in a large CCM cohort to demonstrate the value of artificial intelligence and radiomics in complementing natural history studies for hemorrhage and functional outcome prediction.

MATERIALS AND METHODS

One-hundred-eighty-one patients from a prospectively registered cohort of 366 adults with CCM were included. Fluid attenuated inversion recovery (FLAIR) T2-weighted brain images were preprocessed, and CCM and surrounding edema were segmented before radiomic feature computation. Minority class oversampling, dimensionality reduction and feature selection methods were applied. With prospective hemorrhage as primary outcome, machine learning models were built, cross-validated, and compared using clinico-radiologic, radiomic, and combined features. SHapley Additive exPlanations (SHAP) was used for interpretation to determine the radiomic features with most contribution to hemorrhage prediction.

RESULTS

The highest performances in hemorrhage predictions on the test set were combining radiomic and clinico-radiological features with an area under the curve (AUC) of 83% using linear regression and selected features, and an F1 score of 61% and 85% sensitivity using K-nearest neighbors with principal component analysis (PCA). Multilayer perceptron had the best performance predicting modified Rankin Scale ≥ 2 with an AUC of 74% using PCA derived features. For interpretation of the selected radiomic signature XGBoost model, Shapley additive explanations highlighted 6 radiomic features contributing the most to hemorrhage prediction.

CONCLUSION

Quantitative image-based modeling using machine learning has the potential to highlight novel imaging biomarkers that predict hemorrhagic and functional outcomes, ensuring more precise and personalized care for CCM patients.

摘要

目的

人们对新型预后工具和预测生物标志物越来越感兴趣,希望能更准确地识别出未经治疗就有出血风险的脑动静脉畸形(CAVM)。我们利用大型 CAVM 队列中的磁共振成像(MRI)数据开发了可解释的定量机器学习模型,旨在展示人工智能和放射组学在补充自然史研究方面的价值,以预测出血和功能结局。

材料和方法

本研究纳入了前瞻性注册的 366 例成人 CAVM 队列中的 181 例患者。对液体衰减反转恢复(FLAIR)T2 加权脑图像进行预处理,并在计算放射组学特征之前对 CAVM 和周围水肿进行分割。应用少数类过采样、降维和特征选择方法。以前瞻性出血为主要结局,构建、交叉验证并比较了临床放射学、放射组学和联合特征的机器学习模型。采用 Shapley Additive exPlanations(SHAP)进行解释,以确定对出血预测贡献最大的放射组学特征。

结果

在测试集上,使用线性回归和选定特征,放射组学和临床放射学特征相结合的模型在出血预测中表现最佳,曲线下面积(AUC)为 83%;使用主成分分析(PCA)的 K-最近邻算法,F1 评分为 61%,敏感性为 85%。使用 PCA 衍生特征的多层感知器在预测改良 Rankin 量表≥2 方面表现最佳,AUC 为 74%。对于所选放射组学特征 XGBoost 模型的解释,Shapley 加法解释突出了对出血预测贡献最大的 6 个放射组学特征。

结论

使用机器学习的基于定量图像的建模具有突出预测出血和功能结局的新型影像学生物标志物的潜力,可确保为 CAVM 患者提供更精确和个性化的治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验