文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用机器学习预测肝细胞癌的图像引导治疗反应。

Using Machine Learning to Predict Response to Image-guided Therapies for Hepatocellular Carcinoma.

机构信息

From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.).

出版信息

Radiology. 2023 Nov;309(2):e222891. doi: 10.1148/radiol.222891.


DOI:10.1148/radiol.222891
PMID:37934098
Abstract

Interventional oncology is a rapidly growing field with advances in minimally invasive image-guided local-regional treatments for hepatocellular carcinoma (HCC), including transarterial chemoembolization, transarterial radioembolization, and thermal ablation. However, current standardized clinical staging systems for HCC are limited in their ability to optimize patient selection for treatment as they rely primarily on serum markers and radiologist-defined imaging features. Given the variation in treatment responses, an updated scoring system that includes multidimensional aspects of the disease, including quantitative imaging features, serum markers, and functional biomarkers, is needed to optimally triage patients. With the vast amounts of numerical medical record data and imaging features, researchers have turned to image-based methods, such as radiomics and artificial intelligence (AI), to automatically extract and process multidimensional data from images. The synthesis of these data can provide clinically relevant results to guide personalized treatment plans and optimize resource utilization. Machine learning (ML) is a branch of AI in which a model learns from training data and makes effective predictions by teaching itself. This review article outlines the basics of ML and provides a comprehensive overview of its potential value in the prediction of treatment response in patients with HCC after minimally invasive image-guided therapy.

摘要

介入肿瘤学是一个快速发展的领域,微创影像引导局部区域治疗肝细胞癌 (HCC) 的技术不断进步,包括经动脉化疗栓塞术、经动脉放射性栓塞术和热消融术。然而,目前 HCC 的标准化临床分期系统在优化治疗患者选择方面的能力有限,因为它们主要依赖于血清标志物和放射科医生定义的影像学特征。鉴于治疗反应的差异,需要一种更新的评分系统,该系统包括疾病的多维方面,包括定量影像学特征、血清标志物和功能生物标志物,以最佳地对患者进行分类。由于大量的数值医疗记录数据和影像学特征,研究人员转向基于图像的方法,如放射组学和人工智能 (AI),以自动从图像中提取和处理多维数据。这些数据的综合可以提供临床相关的结果,以指导个性化的治疗计划并优化资源利用。机器学习 (ML) 是人工智能的一个分支,其中模型通过自我教学从训练数据中学习并做出有效的预测。这篇综述文章概述了 ML 的基础知识,并全面概述了其在预测微创影像引导治疗后 HCC 患者治疗反应中的潜在价值。

相似文献

[1]
Using Machine Learning to Predict Response to Image-guided Therapies for Hepatocellular Carcinoma.

Radiology. 2023-11

[2]
Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning-An Artificial Intelligence Concept.

J Vasc Interv Radiol. 2018-6

[3]
Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound.

Eur Radiol. 2020-1-3

[4]
Image-guided percutaneous locoregional therapies for hepatocellular carcinoma.

Chin Clin Oncol. 2023-4

[5]
Liver-directed therapy for hepatocellular carcinoma.

Abdom Radiol (NY). 2018-1

[6]
Salvage locoregional therapies for recurrent hepatocellular carcinoma.

World J Gastroenterol. 2023-1-21

[7]
Development of a computed tomography-based radiomics nomogram for prediction of transarterial chemoembolization refractoriness in hepatocellular carcinoma.

World J Gastroenterol. 2021-1-14

[8]
Predicting Survival Using Pretreatment CT for Patients With Hepatocellular Carcinoma Treated With Transarterial Chemoembolization: Comparison of Models Using Radiomics.

AJR Am J Roentgenol. 2018-9-21

[9]
Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma.

Dig Liver Dis. 2023-7

[10]
Prognostication of Hepatocellular Carcinoma Using Artificial Intelligence.

Korean J Radiol. 2024-6

引用本文的文献

[1]
Prediction of Immunotherapy Response in Hepatocellular Carcinoma Patients Using Pretreatment CT Images.

Diagnostics (Basel). 2025-8-20

[2]
Prognostic and predictive imaging markers of hepatocellular carcinoma: a pictorial essay.

Insights Imaging. 2025-8-15

[3]
Artificial intelligence for multi-time-point arterial phase contrast-enhanced MRI profiling to predict prognosis after transarterial chemoembolization in hepatocellular carcinoma.

Radiol Med. 2025-7-24

[4]
Locoregional Therapies for Hepatocellular Carcinoma with Portal Vein Tumor Thrombus.

J Gastrointest Cancer. 2025-7-23

[5]
Interpretable multiparametric MRI radiomics-based machine learning model for preoperative differentiation between benign and malignant prostate masses: a diagnostic, multicenter study.

Front Oncol. 2025-5-5

[6]
Advances and Emerging Techniques in Y-90 Radioembolization for Hepatocellular Carcinoma.

Cancers (Basel). 2025-4-29

[7]
Machine learning for prognostic impact in elderly unresectable hepatocellular carcinoma undergoing radiotherapy.

Front Oncol. 2025-4-16

[8]
Global trends in artificial intelligence applications in liver disease over seventeen years.

World J Hepatol. 2025-3-27

[9]
Percutaneous Image-Guided Ablation of Renal Cancer: Traditional and Emerging Indications, Energy Sources, Techniques, and Future Developments.

Medicina (Kaunas). 2025-2-28

[10]
All You Need to Know About TACE: A Comprehensive Review of Indications, Techniques, Efficacy, Limits, and Technical Advancement.

J Clin Med. 2025-1-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索