Suppr超能文献

鉴定血清 miR-1246 和 miR-150-5p 作为高级别浆液性卵巢癌的新型诊断生物标志物。

Identification of serum miR-1246 and miR-150-5p as novel diagnostic biomarkers for high-grade serous ovarian cancer.

机构信息

Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.

Cancer Center, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.

出版信息

Sci Rep. 2023 Nov 7;13(1):19287. doi: 10.1038/s41598-023-45317-7.

Abstract

Epithelial ovarian cancer (EOC) is one of the leading cancers in women, with high-grade serous ovarian cancer (HGSOC) being the most common and lethal subtype of this disease. A vast majority of HGSOC are diagnosed at the late stage of the disease when the treatment and total recovery chances are low. Thus, there is an urgent need for novel, more sensitive and specific methods for early and routine HGSOC clinical diagnosis. In this study, we performed miRNA expression profiling using the NanoString miRNA assay in 34 serum samples from patients with HGSOC and 36 healthy women. We identified 13 miRNAs that were differentially expressed (DE). For additional exploration of expression patterns correlated with HGSOC, we performed weighted gene co-expression network analysis (WGCNA). As a result, we showed that the module most correlated with tumour size, nodule and metastasis contained 8 DE miRNAs. The panel including miR-1246 and miR-150-5p was identified as a signature that could discriminate HGSOC patients with AUCs of 0.98 and 1 for the training and test sets, respectively. Furthermore, the above two-miRNA panel had an AUC = 0.946 in the verification cohorts of RT-qPCR data and an AUC = 0.895 using external data from the GEO public database. Thus, the model we developed has the potential to markedly improve the diagnosis of ovarian cancer.

摘要

上皮性卵巢癌(EOC)是女性中发病率较高的癌症之一,其中高级别浆液性卵巢癌(HGSOC)是该病最常见和最致命的亚型。绝大多数 HGSOC 在疾病晚期被诊断出来,此时治疗和完全康复的机会较低。因此,迫切需要新的、更敏感和特异性的方法来进行早期和常规 HGSOC 临床诊断。在这项研究中,我们使用 NanoString miRNA 分析在 34 名 HGSOC 患者和 36 名健康女性的 34 份血清样本中进行了 miRNA 表达谱分析。我们鉴定出了 13 个差异表达的 miRNA。为了进一步探索与 HGSOC 相关的表达模式,我们进行了加权基因共表达网络分析(WGCNA)。结果表明,与肿瘤大小、结节和转移最相关的模块包含 8 个差异表达的 miRNA。包含 miR-1246 和 miR-150-5p 的面板被确定为一个可以区分 HGSOC 患者的标志物,其在训练集和测试集的 AUC 分别为 0.98 和 1。此外,上述两 miRNA 面板在 RT-qPCR 数据的验证队列中的 AUC 为 0.946,在 GEO 公共数据库中的外部数据中的 AUC 为 0.895。因此,我们开发的模型有可能显著提高卵巢癌的诊断水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81cd/10630404/41ff7261c7b2/41598_2023_45317_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验