Suppr超能文献

基于常规实验室数据的机器学习模型对恶性胸腔积液进行鉴别诊断的建立与验证。

Development and validation of a machine learning model for differential diagnosis of malignant pleural effusion using routine laboratory data.

机构信息

Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.

Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.

出版信息

Ther Adv Respir Dis. 2023 Jan-Dec;17:17534666231208632. doi: 10.1177/17534666231208632.

Abstract

BACKGROUND

The differential diagnosis of malignant pleural effusion (MPE) and benign pleural effusion (BPE) presents a clinical challenge. In recent years, the use of artificial intelligence (AI) machine learning models for disease diagnosis has increased.

OBJECTIVE

This study aimed to develop and validate a diagnostic model for early differentiation between MPE and BPE based on routine laboratory data.

DESIGN

This was a retrospective observational cohort study.

METHODS

A total of 2352 newly diagnosed patients with pleural effusion (PE), between January 2008 and March 2021, were eventually enrolled. Among them, 1435, 466, and 451 participants were randomly assigned to the training, validation, and testing cohorts in a ratio of 3:1:1. Clinical parameters, including age, sex, and laboratory parameters of PE patients, were abstracted for analysis. Based on 81 candidate laboratory variables, five machine learning models, namely extreme gradient boosting (XGBoost) model, logistic regression (LR) model, random forest (RF) model, support vector machine (SVM) model, and multilayer perceptron (MLP) model were developed. Their respective diagnostic performances for MPE were evaluated by receiver operating characteristic (ROC) curves.

RESULTS

Among the five models, the XGBoost model exhibited the best diagnostic performance for MPE (area under the curve (AUC): 0.903, 0.918, and 0.886 in the training, validation, and testing cohorts, respectively). Additionally, the XGBoost model outperformed carcinoembryonic antigen (CEA) levels in pleural fluid (PF), serum, and the PF/serum ratio (AUC: 0.726, 0.699, and 0.692 in the training cohort; 0.763, 0.695, and 0.731 in the validation cohort; and 0.722, 0.729, and 0.693 in the testing cohort, respectively). Furthermore, compared with CEA, the XGBoost model demonstrated greater diagnostic power and sensitivity in diagnosing lung cancer-induced MPE.

CONCLUSION

The development of a machine learning model utilizing routine laboratory biomarkers significantly enhances the diagnostic capability for distinguishing between MPE and BPE. The XGBoost model emerges as a valuable tool for the diagnosis of MPE.

摘要

背景

恶性胸腔积液(MPE)和良性胸腔积液(BPE)的鉴别诊断具有临床挑战性。近年来,人工智能(AI)机器学习模型在疾病诊断中的应用有所增加。

目的

本研究旨在基于常规实验室数据开发和验证一种用于早期鉴别 MPE 和 BPE 的诊断模型。

设计

这是一项回顾性观察性队列研究。

方法

共纳入 2008 年 1 月至 2021 年 3 月期间新诊断的胸腔积液(PE)患者 2352 例,其中 1435、466 和 451 例患者分别按 3:1:1 的比例随机分配至训练、验证和测试队列。分析了患者的临床参数,包括年龄、性别和胸腔积液患者的实验室参数。基于 81 个候选实验室变量,建立了五个机器学习模型,分别是极端梯度增强(XGBoost)模型、逻辑回归(LR)模型、随机森林(RF)模型、支持向量机(SVM)模型和多层感知器(MLP)模型。通过受试者工作特征(ROC)曲线评估了它们各自对 MPE 的诊断性能。

结果

在这五个模型中,XGBoost 模型对 MPE 的诊断性能最佳(在训练、验证和测试队列中的曲线下面积(AUC)分别为 0.903、0.918 和 0.886)。此外,XGBoost 模型在胸腔积液(PF)、血清和 PF/血清比值中的癌胚抗原(CEA)水平表现更优(在训练队列中的 AUC 分别为 0.726、0.699 和 0.692;在验证队列中的 AUC 分别为 0.763、0.695 和 0.731;在测试队列中的 AUC 分别为 0.722、0.729 和 0.693)。此外,与 CEA 相比,XGBoost 模型在诊断肺癌引起的 MPE 时具有更高的诊断效能和敏感性。

结论

利用常规实验室生物标志物开发机器学习模型可显著提高鉴别 MPE 和 BPE 的诊断能力。XGBoost 模型是诊断 MPE 的一种有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bb/10637149/f75b4d1c5376/10.1177_17534666231208632-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验