Suppr超能文献

基于临床与计算机断层扫描的放射组学特征模型,用于区分良性和恶性胸腔积液。

An Integrated Clinical and Computerized Tomography-Based Radiomic Feature Model to Separate Benign from Malignant Pleural Effusion.

机构信息

Department of Respiratory and Critical Care Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China,

Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.

出版信息

Respiration. 2024;103(7):406-416. doi: 10.1159/000536517. Epub 2024 Feb 29.

Abstract

INTRODUCTION

Distinguishing between malignant pleural effusion (MPE) and benign pleural effusion (BPE) poses a challenge in clinical practice. We aimed to construct and validate a combined model integrating radiomic features and clinical factors using computerized tomography (CT) images to differentiate between MPE and BPE.

METHODS

A retrospective inclusion of 315 patients with pleural effusion (PE) was conducted in this study (training cohort: n = 220; test cohort: n = 95). Radiomic features were extracted from CT images, and the dimensionality reduction and selection processes were carried out to obtain the optimal radiomic features. Logistic regression (LR), support vector machine (SVM), and random forest were employed to construct radiomic models. LR analyses were utilized to identify independent clinical risk factors to develop a clinical model. The combined model was created by integrating the optimal radiomic features with the independent clinical predictive factors. The discriminative ability of each model was assessed by receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA).

RESULTS

Out of the total 1,834 radiomic features extracted, 15 optimal radiomic features explicitly related to MPE were picked to develop the radiomic model. Among the radiomic models, the SVM model demonstrated the highest predictive performance [area under the curve (AUC), training cohort: 0.876, test cohort: 0.774]. Six clinically independent predictive factors, including age, effusion laterality, procalcitonin, carcinoembryonic antigen, carbohydrate antigen 125 (CA125), and neuron-specific enolase (NSE), were selected for constructing the clinical model. The combined model (AUC: 0.932, 0.870) exhibited superior discriminative performance in the training and test cohorts compared to the clinical model (AUC: 0.850, 0.820) and the radiomic model (AUC: 0.876, 0.774). The calibration curves and DCA further confirmed the practicality of the combined model.

CONCLUSION

This study presented the development and validation of a combined model for distinguishing MPE and BPE. The combined model was a powerful tool for assisting in the clinical diagnosis of PE patients.

摘要

简介

在临床实践中,区分恶性胸腔积液(MPE)和良性胸腔积液(BPE)具有挑战性。我们旨在构建和验证一个结合放射组学特征和临床因素的综合模型,使用计算机断层扫描(CT)图像来区分 MPE 和 BPE。

方法

本研究回顾性纳入了 315 例胸腔积液(PE)患者(训练队列:n = 220;测试队列:n = 95)。从 CT 图像中提取放射组学特征,并进行降维和选择过程以获得最佳放射组学特征。使用逻辑回归(LR)、支持向量机(SVM)和随机森林构建放射组学模型。LR 分析用于确定独立的临床风险因素以开发临床模型。通过整合最佳放射组学特征和独立的临床预测因素来创建联合模型。通过受试者工作特征曲线、校准曲线和决策曲线分析(DCA)评估每个模型的鉴别能力。

结果

从提取的 1834 个放射组学特征中,挑选出 15 个与 MPE 明确相关的最佳放射组学特征来开发放射组学模型。在放射组学模型中,SVM 模型表现出最高的预测性能[曲线下面积(AUC),训练队列:0.876,测试队列:0.774]。选择了 6 个临床独立的预测因素,包括年龄、胸腔积液侧位、降钙素原、癌胚抗原、糖抗原 125(CA125)和神经元特异性烯醇化酶(NSE),用于构建临床模型。联合模型(AUC:0.932、0.870)在训练和测试队列中的鉴别性能均优于临床模型(AUC:0.850、0.820)和放射组学模型(AUC:0.876、0.774)。校准曲线和 DCA 进一步证实了联合模型的实用性。

结论

本研究提出了一种区分 MPE 和 BPE 的综合模型的构建和验证。联合模型是辅助 PE 患者临床诊断的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验