jung diagnostics GmbH, Hamburg, Germany.
Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.
Eur Radiol. 2022 Apr;32(4):2798-2809. doi: 10.1007/s00330-021-08329-3. Epub 2021 Oct 13.
Automated quantification of infratentorial multiple sclerosis lesions on magnetic resonance imaging is clinically relevant but challenging. To overcome some of these problems, we propose a fully automated lesion segmentation algorithm using 3D convolutional neural networks (CNNs).
The CNN was trained on a FLAIR image alone or on FLAIR and T1-weighted images from 1809 patients acquired on 156 different scanners. An additional training using an extra class for infratentorial lesions was implemented. Three experienced raters manually annotated three datasets from 123 MS patients from different scanners.
The inter-rater sensitivity (SEN) was 80% for supratentorial lesions but only 62% for infratentorial lesions. There was no statistically significant difference between the inter-rater SEN and the SEN of the CNN with respect to the raters. For supratentorial lesions, the CNN featured an intra-rater intra-scanner SEN of 0.97 (R1 = 0.90, R2 = 0.84) and for infratentorial lesion a SEN of 0.93 (R1 = 0.61, R2 = 0.73).
The performance of the CNN improved significantly for infratentorial lesions when specifically trained on infratentorial lesions using a T1 image as an additional input and matches the detection performance of experienced raters. Furthermore, for infratentorial lesions the CNN was more robust against repeated scans than experienced raters.
• A 3D convolutional neural network was trained on MRI data from 1809 patients (156 different scanners) for the quantification of supratentorial and infratentorial multiple sclerosis lesions. • Inter-rater variability was higher for infratentorial lesions than for supratentorial lesions. The performance of the 3D convolutional neural network (CNN) improved significantly for infratentorial lesions when specifically trained on infratentorial lesions using a T1 image as an additional input. • The detection performance of the CNN matches the detection performance of experienced raters.
在磁共振成像上对小脑多发性硬化病变进行自动定量分析具有重要的临床意义,但也极具挑战性。为了克服这些问题中的一些,我们提出了一种使用三维卷积神经网络(CNN)的全自动病变分割算法。
该 CNN 仅在 FLAIR 图像上,或在来自 156 个不同扫描仪的 1809 名患者的 FLAIR 和 T1 加权图像上进行训练。实施了一项额外的使用小脑病变额外类别的训练。三位经验丰富的评分者手动注释了来自 123 名来自不同扫描仪的 MS 患者的三个数据集。
幕上病变的组内评分者间灵敏度(SEN)为 80%,但幕下病变仅为 62%。在评分者方面,CNN 的组内评分者间 SEN 与 SEN 之间没有统计学上的显著差异。对于幕上病变,CNN 的组内评分者内扫描仪 SEN 为 0.97(R1 = 0.90,R2 = 0.84),而对于幕下病变,SEN 为 0.93(R1 = 0.61,R2 = 0.73)。
当使用 T1 图像作为附加输入,专门针对幕下病变对 CNN 进行训练时,其对幕下病变的性能显著提高,并且与经验丰富的评分者的检测性能相匹配。此外,对于幕下病变,CNN 比经验丰富的评分者更能抵抗重复扫描。
基于来自 1809 名患者(156 个不同扫描仪)的 MRI 数据,使用三维卷积神经网络对幕上和幕下多发性硬化病变进行定量分析。
幕下病变的评分者间变异性高于幕上病变。当使用 T1 图像作为附加输入,专门针对幕下病变对 3D 卷积神经网络(CNN)进行训练时,CNN 对幕下病变的性能显著提高。
CNN 的检测性能与经验丰富的评分者的检测性能相匹配。