Suppr超能文献

从社交网络特征预测孤独感中的性别差异。

Gender differences in predicting loneliness from social network characteristics.

作者信息

Stokes J, Levin I

出版信息

J Pers Soc Psychol. 1986 Nov;51(5):1069-74. doi: 10.1037//0022-3514.51.5.1069.

Abstract

In two studies we examined gender differences in predicting loneliness from measures of social network structure and a measure of perceived social support. The results showed that social network characteristics, especially density, were consistently better predictors of perceived loneliness for men than for women. Study 1 used the traditional measure of network density in which the number of relationships among network members was determined. Study 2 used a newly developed index of density that assessed the extent of closeness of relationships between pairs of network members. Uniformly, male subjects with more highly interconnected, cohesive sets of friends reported themselves to be less lonely, whereas density had little relation to loneliness in female subjects. These results are discussed as possibly indicating that men and women use different standards in evaluating whether they are lonely. It is suggested that men may use more group-oriented criteria in evaluating loneliness, whereas women focus more on the qualities of dyadic relationships.

摘要

在两项研究中,我们从社交网络结构的测量指标以及感知到的社会支持的测量指标来考察预测孤独感方面的性别差异。结果表明,社交网络特征,尤其是密度,对于男性感知到的孤独感而言,始终比女性的更好的预测指标。研究1使用了传统的网络密度测量方法,即确定网络成员之间的关系数量。研究2使用了新开发的密度指数,该指数评估网络成员对之间关系的亲密程度。一致的是,拥有联系更紧密、更具凝聚力的朋友圈的男性受试者报告自己的孤独感较低,而密度与女性受试者的孤独感几乎没有关系。讨论了这些结果可能表明男性和女性在评估自己是否孤独时使用不同的标准。有人提出,男性在评估孤独感时可能使用更多以群体为导向的标准,而女性则更关注二元关系的质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验