Artificial Intelligence in Medical Imaging, University of Bern, 3008, Bern, Switzerland.
Department of Ophthalmology, Bern University Hospital, 3010, Bern, Switzerland.
Sci Rep. 2023 Nov 11;13(1):19667. doi: 10.1038/s41598-023-47019-6.
Recent developments in deep learning have shown success in accurately predicting the location of biological markers in Optical Coherence Tomography (OCT) volumes of patients with Age-Related Macular Degeneration (AMD) and Diabetic Retinopathy (DR). We propose a method that automatically locates biological markers to the Early Treatment Diabetic Retinopathy Study (ETDRS) rings, only requiring B-scan-level presence annotations. We trained a neural network using 22,723 OCT B-Scans of 460 eyes (433 patients) with AMD and DR, annotated with slice-level labels for Intraretinal Fluid (IRF) and Subretinal Fluid (SRF). The neural network outputs were mapped into the corresponding ETDRS rings. We incorporated the class annotations and domain knowledge into a loss function to constrain the output with biologically plausible solutions. The method was tested on a set of OCT volumes with 322 eyes (189 patients) with Diabetic Macular Edema, with slice-level SRF and IRF presence annotations for the ETDRS rings. Our method accurately predicted the presence of IRF and SRF in each ETDRS ring, outperforming previous baselines even in the most challenging scenarios. Our model was also successfully applied to en-face marker segmentation and showed consistency within C-scans, despite not incorporating volume information in the training process. We achieved a correlation coefficient of 0.946 for the prediction of the IRF area.
深度学习的最新进展表明,它在准确预测年龄相关性黄斑变性(AMD)和糖尿病性视网膜病变(DR)患者的光学相干断层扫描(OCT)体积中生物标志物的位置方面取得了成功。我们提出了一种方法,该方法仅需要 B 扫描级别的存在注释,即可自动将生物标志物定位到早期治疗糖尿病性视网膜病变研究(ETDRS)环。我们使用 460 只眼睛(433 名患者)的 22723 个 AMD 和 DR 的 OCT B 扫描进行了神经网络训练,这些 B 扫描均带有视网膜内液(IRF)和视网膜下液(SRF)的切片级标签。神经网络的输出被映射到相应的 ETDRS 环中。我们将类注释和领域知识纳入损失函数中,以用生物学上合理的解决方案来约束输出。该方法在一组包含 322 只眼睛(189 名患者)的 OCT 体积上进行了测试,这些 OCT 体积具有 ETDRS 环的 SRF 和 IRF 存在的切片级注释。我们的方法准确地预测了每个 ETDRS 环中 IRF 和 SRF 的存在,即使在最具挑战性的情况下,也优于以前的基线。我们的模型还成功地应用于面内标记分割,尽管在训练过程中没有包含体积信息,但在 C 扫描中表现出了一致性。我们实现了 0.946 的 IRF 面积预测相关系数。