Suppr超能文献

基于深度学习的 OCT 图像硬性渗出物检测及视网膜内层紊乱识别方法。

A deep learning approach to hard exudates detection and disorganization of retinal inner layers identification on OCT images.

机构信息

Ophthalmology Clinic, Department of Medicine and Ageing Science, University "G. D'Annunzio" of Chieti-Pescara, Via Dei Vestini Snc, 66100, Chieti, Italy.

Datamantix S.R.L. Artificial Intelligence Company, Via Paolo Sarpi, 14/15, 33100, Udine, Italy.

出版信息

Sci Rep. 2024 Jul 19;14(1):16652. doi: 10.1038/s41598-024-63844-9.

Abstract

The purpose of the study was to detect Hard Exudates (HE) and classify Disorganization of Retinal Inner Layers (DRIL) implementing a Deep Learning (DL) system on optical coherence tomography (OCT) images of eyes with diabetic macular edema (DME). We collected a dataset composed of 442 OCT images on which we annotated 6847 HE and the presence of DRIL. A complex operational pipeline was defined to implement data cleaning and image transformations, and train two DL models. The state-of-the-art neural network architectures (Yolov7, ConvNeXt, RegNetX) and advanced techniques were exploited to aggregate the results (Ensemble learning, Edge detection) and obtain a final model. The DL approach reached good performance in detecting HE and classifying DRIL. Regarding HE detection the model got an AP@0.5 score equal to 34.4% with Precision of 48.7% and Recall of 43.1%; while for DRIL classification an Accuracy of 91.1% with Sensitivity and Specificity both of 91.1% and AUC and AUPR values equal to 91% were obtained. The P-value was lower than 0.05 and the Kappa coefficient was 0.82. The DL models proved to be able to identify HE and DRIL in eyes with DME with a very good accuracy and all the metrics calculated confirmed the system performance. Our DL approach demonstrated to be a good candidate as a supporting tool for ophthalmologists in OCT images analysis.

摘要

本研究旨在利用深度学习(DL)系统在糖尿病性黄斑水肿(DME)患者的光学相干断层扫描(OCT)图像上检测硬性渗出物(HE)并对视网膜内层紊乱(DRIL)进行分类。我们收集了一个由 442 张 OCT 图像组成的数据集,在这些图像上我们标注了 6847 个 HE 和 DRIL 的存在。定义了一个复杂的操作流程来实现数据清理和图像转换,并训练两个 DL 模型。利用最先进的神经网络架构(Yolov7、ConvNeXt、RegNetX)和先进技术来聚合结果(集成学习、边缘检测)并获得最终模型。DL 方法在检测 HE 和分类 DRIL 方面表现出良好的性能。在 HE 检测方面,该模型在 AP@0.5 上的得分达到 34.4%,精度为 48.7%,召回率为 43.1%;而在 DRIL 分类方面,准确率为 91.1%,灵敏度和特异性均为 91.1%,AUC 和 AUPR 值均为 91%。P 值小于 0.05,Kappa 系数为 0.82。DL 模型证明能够非常准确地识别 DME 患者的 HE 和 DRIL,所有计算的指标都证实了系统的性能。我们的 DL 方法被证明是 OCT 图像分析中眼科医生的一个很好的辅助工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec1/11271624/7d72642e89cc/41598_2024_63844_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验