Suppr超能文献

基于活性基序的机器学习用于CO还原的电催化剂的数据驱动发现

Data-driven discovery of electrocatalysts for CO reduction using active motifs-based machine learning.

作者信息

Mok Dong Hyeon, Li Hong, Zhang Guiru, Lee Chaehyeon, Jiang Kun, Back Seoin

机构信息

Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.

Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Nat Commun. 2023 Nov 11;14(1):7303. doi: 10.1038/s41467-023-43118-0.

Abstract

The electrochemical carbon dioxide reduction reaction (CORR) is an attractive approach for mitigating CO emissions and generating value-added products. Consequently, discovery of promising CORR catalysts has become a crucial task, and machine learning (ML) has been utilized to accelerate catalyst discovery. However, current ML approaches are limited to exploring narrow chemical spaces and provide only fragmentary catalytic activity, even though CORR produces various chemicals. Here, by merging pre-developed ML model and a CORR selectivity map, we establish high-throughput virtual screening strategy to suggest active and selective catalysts for CORR without being limited to a database. Further, this strategy can provide guidance on stoichiometry and morphology of the catalyst to researchers. We predict the activity and selectivity of 465 metallic catalysts toward four expected reaction products. During this process, we discover previously unreported and promising behavior of Cu-Ga and Cu-Pd alloys. These findings are then validated through experimental methods.

摘要

电化学二氧化碳还原反应(CORR)是一种有吸引力的方法,可用于减少二氧化碳排放并生成增值产品。因此,发现有前景的CORR催化剂已成为一项关键任务,机器学习(ML)已被用于加速催化剂的发现。然而,目前的ML方法仅限于探索狭窄的化学空间,并且即使CORR会产生多种化学物质,也只能提供零碎的催化活性。在这里,通过将预先开发的ML模型与CORR选择性图相结合,我们建立了高通量虚拟筛选策略,以推荐用于CORR的活性和选择性催化剂,而不受数据库的限制。此外,该策略可以为研究人员提供有关催化剂化学计量和形态的指导。我们预测了465种金属催化剂对四种预期反应产物的活性和选择性。在此过程中,我们发现了铜镓合金和铜钯合金以前未报道的且有前景的行为。然后通过实验方法对这些发现进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0d2/10640609/bf12fcd1e482/41467_2023_43118_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验