Suppr超能文献

变革糖尿病诊断:机器学习技术大显身手。

Revolutionizing Diabetes Diagnosis: Machine Learning Techniques Unleashed.

作者信息

Shaukat Zain, Zafar Wisal, Ahmad Waqas, Haq Ihtisham Ul, Husnain Ghassan, Al-Adhaileh Mosleh Hmoud, Ghadi Yazeed Yasin, Algarni Abdulmohsen

机构信息

Department of Computer Science, Iqra National University Peshawar, Peshawar 25100, Pakistan.

Department of Mechatronics Engineering, UET Peshawar, Peshawar 25000, Pakistan.

出版信息

Healthcare (Basel). 2023 Oct 31;11(21):2864. doi: 10.3390/healthcare11212864.

Abstract

The intricate and multifaceted nature of diabetes disrupts the body's crucial glucose processing mechanism, which serves as a fundamental energy source for the cells. This research aims to predict the occurrence of diabetes in individuals by harnessing the power of machine learning algorithms, utilizing the PIMA diabetes dataset. The selected algorithms employed in this study encompass Decision Tree, K-Nearest Neighbor, Random Forest, Logistic Regression, and Support Vector Machine. To execute the experiments, two software tools, namely Waikato Environment for Knowledge Analysis (WEKA) version 3.8.1 and Python version 3.10, were utilized. To evaluate the performance of the algorithms, several metrics were employed, including true positive rate, false positive rate, precision, recall, F-measure, Matthew's correlation coefficient, receiver operating characteristic area, and precision-recall curves area. Furthermore, various errors such as Mean Absolute Error, Root Mean Squared Error, Relative Absolute Error, and Root Relative Squared Error were examined to assess the accuracy of the models. Upon conducting the experiments, it was observed that Logistic Regression outperformed the other techniques, exhibiting the highest precision of 81 percent using Python and 80.43 percent using WEKA. These findings shed light on the efficacy of machine learning in predicting diabetes and highlight the potential of Logistic Regression as a valuable tool in this domain.

摘要

糖尿病复杂多面的特性扰乱了人体关键的葡萄糖处理机制,而葡萄糖是细胞的基本能量来源。本研究旨在通过利用机器学习算法的力量,使用皮马印第安人糖尿病数据集来预测个体患糖尿病的情况。本研究中使用的选定算法包括决策树、K近邻、随机森林、逻辑回归和支持向量机。为了执行实验,使用了两个软件工具,即怀卡托知识分析环境(WEKA)3.8.1版本和Python 3.10版本。为了评估算法的性能,采用了几个指标,包括真阳性率、假阳性率、精确率、召回率、F值、马修斯相关系数、接收器操作特征面积和精确率-召回率曲线面积。此外,还检查了各种误差,如平均绝对误差、均方根误差、相对绝对误差和根相对平方误差,以评估模型的准确性。进行实验后发现,逻辑回归的表现优于其他技术,使用Python时表现出最高精确率81%,使用WEKA时为80.43%。这些发现揭示了机器学习在预测糖尿病方面的功效,并突出了逻辑回归作为该领域有价值工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc6b/10648466/0a111590bf6c/healthcare-11-02864-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验