文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Improvement of the YOLOv5 Model in the Optimization of the Brown Spot Disease Recognition Algorithm of Kidney Bean.

作者信息

Su Pengyan, Li Hao, Wang Xiaoyun, Wang Qianyu, Hao Bokun, Feng Meichen, Sun Xinkai, Yang Zhongyu, Jing Binghan, Wang Chao, Qin Mingxing, Song Xiaoyan, Xiao Lujie, Sun Jingjing, Zhang Meijun, Yang Wude

机构信息

College of Agriculture, Shanxi Agricultural University, Taigu, Jingzhong 030801, China.

College of Resources and Environment, Shanxi Agricultural University, Taigu, Jingzhong 030801, China.

出版信息

Plants (Basel). 2023 Nov 3;12(21):3765. doi: 10.3390/plants12213765.


DOI:10.3390/plants12213765
PMID:37960121
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10648829/
Abstract

The kidney bean is an important cash crop whose growth and yield are severely affected by brown spot disease. Traditional target detection models cannot effectively screen out key features, resulting in model overfitting and weak generalization ability. In this study, a Bi-Directional Feature Pyramid Network (BiFPN) and Squeeze and Excitation (SE) module were added to a YOLOv5 model to improve the multi-scale feature fusion and key feature extraction abilities of the improved model. The results show that the BiFPN and SE modules show higher heat in the target location region and pay less attention to irrelevant environmental information in the non-target region. The detection Precision, Recall, and mean average Precision (mAP@0.5) of the improved YOLOv5 model are 94.7%, 88.2%, and 92.5%, respectively, which are 4.9% higher in Precision, 0.5% higher in Recall, and 25.6% higher in the mean average Precision compared to the original YOLOv5 model. Compared with the YOLOv5-SE, YOLOv5-BiFPN, FasterR-CNN, and EfficientDet models, detection Precision improved by 1.8%, 3.0%, 9.4%, and 9.5%, respectively. Moreover, the rate of missed and wrong detection in the improved YOLOv5 model is only 8.16%. Therefore, the YOLOv5-SE-BiFPN model can more effectively detect the brown spot area of kidney beans.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/7aa0279ca007/plants-12-03765-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/e79c07048408/plants-12-03765-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/08e4371131ce/plants-12-03765-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/cb08ce2cd5c6/plants-12-03765-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/21c5e7493a41/plants-12-03765-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/864df8fa9c83/plants-12-03765-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/ac0fe484b0f0/plants-12-03765-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/085d545fe0b6/plants-12-03765-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/caed06ce0363/plants-12-03765-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/b295dc56b64d/plants-12-03765-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/f3676168ca39/plants-12-03765-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/7aa0279ca007/plants-12-03765-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/e79c07048408/plants-12-03765-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/08e4371131ce/plants-12-03765-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/cb08ce2cd5c6/plants-12-03765-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/21c5e7493a41/plants-12-03765-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/864df8fa9c83/plants-12-03765-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/ac0fe484b0f0/plants-12-03765-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/085d545fe0b6/plants-12-03765-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/caed06ce0363/plants-12-03765-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/b295dc56b64d/plants-12-03765-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/f3676168ca39/plants-12-03765-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/10648829/7aa0279ca007/plants-12-03765-g011.jpg

相似文献

[1]
Improvement of the YOLOv5 Model in the Optimization of the Brown Spot Disease Recognition Algorithm of Kidney Bean.

Plants (Basel). 2023-11-3

[2]
YOLOv5-KCB: A New Method for Individual Pig Detection Using Optimized K-Means, CA Attention Mechanism and a Bi-Directional Feature Pyramid Network.

Sensors (Basel). 2023-5-31

[3]
Lightweight tea bud recognition network integrating GhostNet and YOLOv5.

Math Biosci Eng. 2022-9-5

[4]
Accurate and fast detection of tomatoes based on improved YOLOv5s in natural environments.

Front Plant Sci. 2024-1-11

[5]
Research on Mask-Wearing Detection Algorithm Based on Improved YOLOv5.

Sensors (Basel). 2022-6-29

[6]
Defect Detection for Metal Shaft Surfaces Based on an Improved YOLOv5 Algorithm and Transfer Learning.

Sensors (Basel). 2023-4-5

[7]
Research on improved algorithm for helmet detection based on YOLOv5.

Sci Rep. 2023-10-23

[8]
Enhanced YOLOv5: An Efficient Road Object Detection Method.

Sensors (Basel). 2023-10-10

[9]
Detection of Green Asparagus in Complex Environments Based on the Improved YOLOv5 Algorithm.

Sensors (Basel). 2023-2-1

[10]
Aphid Recognition and Counting Based on an Improved YOLOv5 Algorithm in a Climate Chamber Environment.

Insects. 2023-10-28

引用本文的文献

[1]
Chili Pepper Object Detection Method Based on Improved YOLOv8n.

Plants (Basel). 2024-8-28

[2]
Phenotypic detection of flax plants based on improved Flax-YOLOv5.

Front Plant Sci. 2024-7-11

本文引用的文献

[1]
Detection of Rice Pests Based on Self-Attention Mechanism and Multi-Scale Feature Fusion.

Insects. 2023-3-13

[2]
IoT and Interpretable Machine Learning Based Framework for Disease Prediction in Pearl Millet.

Sensors (Basel). 2021-8-9

[3]
AI-Driven Framework for Recognition of Guava Plant Diseases through Machine Learning from DSLR Camera Sensor Based High Resolution Imagery.

Sensors (Basel). 2021-6-1

[4]
A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework.

PeerJ Comput Sci. 2021-4-7

[5]
The development of attentional mechanisms.

Nebr Symp Motiv. 1980

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索