Suppr超能文献

基于YOLOv5的头盔检测改进算法研究

Research on improved algorithm for helmet detection based on YOLOv5.

作者信息

Shan Chun, Liu HongMing, Yu Yu

机构信息

Guangdong Polytechnic Normal University, Guangzhou, China.

Guangzhou University, Guangzhou, China.

出版信息

Sci Rep. 2023 Oct 23;13(1):18056. doi: 10.1038/s41598-023-45383-x.

Abstract

The continuous development of smart industrial parks has imposed increasingly stringent requirements on safety helmet detection in environments such as factories, construction sites, rail transit, and fire protection. Current models often suffer from issues like false alarms or missed detections, especially when dealing with small and densely packed targets. This study aims to enhance the YOLOv5 target detection method to provide real-time alerts for individuals not wearing safety helmets in complex scenarios. Our approach involves incorporating the ECA channel attention mechanism into the YOLOv5 backbone network, allowing for efficient feature extraction while reducing computational load. We adopt a weighted bi-directional feature pyramid network structure (BiFPN) to facilitate effective feature fusion and cross-scale information transmission. Additionally, the introduction of a decoupling head in YOLOv5 improves detection performance and convergence rate. The experimental results demonstrate a substantial improvement in the YOLOv5 model's performance. The enhanced YOLOv5 model achieved an average accuracy of 95.9% on a custom-made helmet dataset, a 3.0 percentage point increase compared to the original YOLOv5 model. This study holds significant implications for enhancing the accuracy and robustness of helmet-wearing detection in various settings.

摘要

智能工业园区的持续发展对工厂、建筑工地、轨道交通和消防等环境中的安全帽检测提出了越来越严格的要求。当前的模型常常存在误报或漏检等问题,尤其是在处理小目标且密集排列的目标时。本研究旨在改进YOLOv5目标检测方法,以便在复杂场景中为未佩戴安全帽的人员提供实时警报。我们的方法包括将ECA通道注意力机制融入YOLOv5主干网络,在减少计算量的同时实现高效的特征提取。我们采用加权双向特征金字塔网络结构(BiFPN)来促进有效的特征融合和跨尺度信息传输。此外,在YOLOv5中引入解耦头提高了检测性能和收敛速度。实验结果表明YOLOv5模型的性能有了显著提升。改进后的YOLOv5模型在定制的安全帽数据集上实现了95.9%的平均准确率,相比原始YOLOv5模型提高了3.0个百分点。本研究对于提高各种场景下佩戴安全帽检测的准确性和鲁棒性具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/b39a205939f0/41598_2023_45383_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验