文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Research on improved algorithm for helmet detection based on YOLOv5.

作者信息

Shan Chun, Liu HongMing, Yu Yu

机构信息

Guangdong Polytechnic Normal University, Guangzhou, China.

Guangzhou University, Guangzhou, China.

出版信息

Sci Rep. 2023 Oct 23;13(1):18056. doi: 10.1038/s41598-023-45383-x.


DOI:10.1038/s41598-023-45383-x
PMID:37872253
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10593779/
Abstract

The continuous development of smart industrial parks has imposed increasingly stringent requirements on safety helmet detection in environments such as factories, construction sites, rail transit, and fire protection. Current models often suffer from issues like false alarms or missed detections, especially when dealing with small and densely packed targets. This study aims to enhance the YOLOv5 target detection method to provide real-time alerts for individuals not wearing safety helmets in complex scenarios. Our approach involves incorporating the ECA channel attention mechanism into the YOLOv5 backbone network, allowing for efficient feature extraction while reducing computational load. We adopt a weighted bi-directional feature pyramid network structure (BiFPN) to facilitate effective feature fusion and cross-scale information transmission. Additionally, the introduction of a decoupling head in YOLOv5 improves detection performance and convergence rate. The experimental results demonstrate a substantial improvement in the YOLOv5 model's performance. The enhanced YOLOv5 model achieved an average accuracy of 95.9% on a custom-made helmet dataset, a 3.0 percentage point increase compared to the original YOLOv5 model. This study holds significant implications for enhancing the accuracy and robustness of helmet-wearing detection in various settings.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/6cd71e7be402/41598_2023_45383_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/b39a205939f0/41598_2023_45383_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/2a59ae84ec1a/41598_2023_45383_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/ef928c612511/41598_2023_45383_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/26aaaebe849c/41598_2023_45383_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/856ff227dd07/41598_2023_45383_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/6cd71e7be402/41598_2023_45383_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/b39a205939f0/41598_2023_45383_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/2a59ae84ec1a/41598_2023_45383_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/ef928c612511/41598_2023_45383_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/26aaaebe849c/41598_2023_45383_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/856ff227dd07/41598_2023_45383_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/10593779/6cd71e7be402/41598_2023_45383_Fig7_HTML.jpg

相似文献

[1]
Research on improved algorithm for helmet detection based on YOLOv5.

Sci Rep. 2023-10-23

[2]
Research on Mask-Wearing Detection Algorithm Based on Improved YOLOv5.

Sensors (Basel). 2022-6-29

[3]
YOLOv5-KCB: A New Method for Individual Pig Detection Using Optimized K-Means, CA Attention Mechanism and a Bi-Directional Feature Pyramid Network.

Sensors (Basel). 2023-5-31

[4]
Small Target-YOLOv5: Enhancing the Algorithm for Small Object Detection in Drone Aerial Imagery Based on YOLOv5.

Sensors (Basel). 2023-12-26

[5]
An Aerial Image Detection Algorithm Based on Improved YOLOv5.

Sensors (Basel). 2024-4-19

[6]
Research on helmet wearing detection method based on deep learning.

Sci Rep. 2024-3-25

[7]
Improvement of the YOLOv5 Model in the Optimization of the Brown Spot Disease Recognition Algorithm of Kidney Bean.

Plants (Basel). 2023-11-3

[8]
Helmet wearing detection algorithm based on improved YOLOv5.

Sci Rep. 2024-4-16

[9]
Recognition of terminal buds of densely-planted Chinese fir seedlings using improved YOLOv5 by integrating attention mechanism.

Front Plant Sci. 2022-10-10

[10]
Fast Helmet and License Plate Detection Based on Lightweight YOLOv5.

Sensors (Basel). 2023-4-27

引用本文的文献

[1]
Fuzzy control algorithm of cleaning parameters of street sweeper based on road garbage volume grading.

Sci Rep. 2025-3-11

[2]
Physiological state recognition model of small silkworm based on improved YOLOv5.

Sci Prog. 2024

本文引用的文献

[1]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[2]
Region-Based Convolutional Networks for Accurate Object Detection and Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2016-1

[3]
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

IEEE Trans Pattern Anal Mach Intell. 2015-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索