Suppr超能文献

量化幸福感的数字生物标志物:通过可穿戴设备测量压力、焦虑、积极和消极情绪及其基于时间的预测。

Quantifying Digital Biomarkers for Well-Being: Stress, Anxiety, Positive and Negative Affect via Wearable Devices and Their Time-Based Predictions.

机构信息

Computer Engineering Department, Boğaziçi University, 34342 İstanbul, Türkiye.

出版信息

Sensors (Basel). 2023 Nov 5;23(21):8987. doi: 10.3390/s23218987.

Abstract

Wearable devices have become ubiquitous, collecting rich temporal data that offers valuable insights into human activities, health monitoring, and behavior analysis. Leveraging these data, researchers have developed innovative approaches to classify and predict time-based patterns and events in human life. Time-based techniques allow the capture of intricate temporal dependencies, which is the nature of the data coming from wearable devices. This paper focuses on predicting well-being factors, such as stress, anxiety, and positive and negative affect, on the Tesserae dataset collected from office workers. We examine the performance of different methodologies, including deep-learning architectures, LSTM, ensemble techniques, Random Forest (RF), and XGBoost, and compare their performances for time-based and non-time-based versions. In time-based versions, we investigate the effect of previous records of well-being factors on the upcoming ones. The overall results show that time-based LSTM performs the best among conventional (non-time-based) RF, XGBoost, and LSTM. The performance even increases when we consider a more extended previous period, in this case, 3 past-days rather than 1 past-day to predict the next day. Furthermore, we explore the corresponding biomarkers for each well-being factor using feature ranking. The obtained rankings are compatible with the psychological literature. In this work, we validated them based on device measurements rather than subjective survey responses.

摘要

可穿戴设备已经无处不在,它们收集了丰富的时间数据,为人类活动、健康监测和行为分析提供了有价值的见解。研究人员利用这些数据,开发了创新的方法来分类和预测人类生活中的基于时间的模式和事件。基于时间的技术允许捕获复杂的时间依赖关系,这是可穿戴设备所产生数据的本质。本文专注于预测 Tesserae 数据集(从上班族那里收集)中的幸福感因素,如压力、焦虑、积极和消极情绪。我们研究了不同方法的性能,包括深度学习架构、LSTM、集成技术、随机森林 (RF) 和 XGBoost,并比较了它们在基于时间和非基于时间版本上的性能。在基于时间的版本中,我们研究了幸福感因素的先前记录对即将到来的因素的影响。总体结果表明,基于时间的 LSTM 在传统的(非基于时间的)RF、XGBoost 和 LSTM 中表现最佳。当我们考虑更长的先前时间段(在这种情况下为 3 天而不是 1 天)来预测第二天时,性能甚至会提高。此外,我们使用特征排序来探索每个幸福感因素的相应生物标志物。获得的排名与心理学文献一致。在这项工作中,我们基于设备测量而不是主观调查回复来验证它们。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a609/10649682/070861faeafb/sensors-23-08987-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验