Suppr超能文献

在规范化幂先验贝叶斯分析中的有效后验推断。

On efficient posterior inference in normalized power prior Bayesian analysis.

机构信息

School of Statistics, University of International Business and Economics, Beijing, China.

Department of Management Science and Statistics, The University of Texas at San Antonio, San Antonio, Texas, USA.

出版信息

Biom J. 2023 Jun;65(5):e2200194. doi: 10.1002/bimj.202200194. Epub 2023 Mar 23.

Abstract

The power prior has been widely used to discount the amount of information borrowed from historical data in the design and analysis of clinical trials. It is realized by raising the likelihood function of the historical data to a power parameter , which quantifies the heterogeneity between the historical and the new study. In a fully Bayesian approach, a natural extension is to assign a hyperprior to δ such that the posterior of δ can reflect the degree of similarity between the historical and current data. To comply with the likelihood principle, an extra normalizing factor needs to be calculated and such prior is known as the normalized power prior. However, the normalizing factor involves an integral of a prior multiplied by a fractional likelihood and needs to be computed repeatedly over different δ during the posterior sampling. This makes its use prohibitive in practice for most elaborate models. This work provides an efficient framework to implement the normalized power prior in clinical studies. It bypasses the aforementioned efforts by sampling from the power prior with and only. Such a posterior sampling procedure can facilitate the use of a random δ with adaptive borrowing capability in general models. The numerical efficiency of the proposed method is illustrated via extensive simulation studies, a toxicological study, and an oncology study.

摘要

优先幂在临床试验的设计和分析中被广泛用于折扣从历史数据中借用的信息量。它是通过将历史数据的似然函数提升到幂参数 来实现的,该参数量化了历史数据和新研究之间的异质性。在完全贝叶斯方法中,一种自然的扩展是为 δ 分配超先验,以便 δ 的后验可以反映历史数据和当前数据之间的相似程度。为了符合似然原理,需要计算一个额外的归一化因子,并且这种先验被称为归一化幂先验。然而,归一化因子涉及先验乘以分数似然的积分,并且需要在不同的 δ 之间重复计算,以便在后验抽样期间进行计算。这使得在实践中对于大多数复杂模型来说,它的使用是不可行的。这项工作为临床研究中实现归一化幂先验提供了一个有效的框架。它通过仅从 和 中抽样来避免上述努力。这种后验抽样程序可以促进在一般模型中使用具有自适应借用能力的随机 δ。通过广泛的模拟研究、毒理学研究和肿瘤学研究,说明了所提出方法的数值效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验