Amaya Camilo, von Arnim Axel
Department of Neuromorphic Computing, Fortiss-Research Institute, Munich, Bavaria, Germany.
Front Neurorobot. 2023 Oct 25;17:1239581. doi: 10.3389/fnbot.2023.1239581. eCollection 2023.
Neuromorphic hardware paired with brain-inspired learning strategies have enormous potential for robot control. Explicitly, these advantages include low energy consumption, low latency, and adaptability. Therefore, developing and improving learning strategies, algorithms, and neuromorphic hardware integration in simulation is a key to moving the state-of-the-art forward. In this study, we used the neurorobotics platform (NRP) simulation framework to implement spiking reinforcement learning control for a robotic arm. We implemented a force-torque feedback-based classic object insertion task ("peg-in-hole") and controlled the robot for the first time with neuromorphic hardware in the loop. We therefore provide a solution for training the system in uncertain environmental domains by using randomized simulation parameters. This leads to policies that are robust to real-world parameter variations in the target domain, filling the sim-to-real gap.To the best of our knowledge, it is the first neuromorphic implementation of the peg-in-hole task in simulation with the neuromorphic Loihi chip in the loop, and with scripted accelerated interactive training in the Neurorobotics Platform, including randomized domains.
神经形态硬件与受大脑启发的学习策略相结合,在机器人控制方面具有巨大潜力。具体而言,这些优势包括低能耗、低延迟和适应性。因此,在模拟中开发和改进学习策略、算法以及神经形态硬件集成是推动技术前沿发展的关键。在本研究中,我们使用神经机器人平台(NRP)模拟框架对机器人手臂实施脉冲强化学习控制。我们实现了基于力 - 扭矩反馈的经典物体插入任务(“插销入孔”),并首次在回路中使用神经形态硬件控制机器人。因此,我们通过使用随机模拟参数,为在不确定环境领域中训练系统提供了一种解决方案。这产生了对目标领域中现实世界参数变化具有鲁棒性的策略,填补了模拟到现实的差距。据我们所知,这是首次在模拟中使用神经形态的Loihi芯片在回路中,并在神经机器人平台上进行脚本化加速交互式训练(包括随机域)来实现插销入孔任务的神经形态实现。