文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

高分辨率 3D 可视化肿瘤中纳米药物的分布。

High-resolution 3D visualization of nanomedicine distribution in tumors.

机构信息

Bioscience, Discovery, Oncology R&D, AstraZeneca, Cambridge, United Kingdom.

Personalised Healthcare and Biomarkers, AstraZeneca, Macclesfield, United Kingdom.

出版信息

Theranostics. 2020 Jan 1;10(2):880-897. doi: 10.7150/thno.37178. eCollection 2020.


DOI:10.7150/thno.37178
PMID:31903157
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6929971/
Abstract

To improve the clinical translation of anti-cancer nanomedicines, it is necessary to begin building specific insights into the broad concept of the Enhanced Permeability and Retention (EPR) effect, using detailed investigations of the accumulation, distribution and retention of nanomedicines in solid tumors. Nanomedicine accumulation in preclinical tumors has been extensively studied; however, treatment efficacy will be heavily influenced by both the quantity of drug-loaded nanomedicines reaching the tumor as well as their spatial distribution throughout the tumor. It remains a challenge to image the heterogeneity of nanomedicine distribution in 3 dimensions within solid tumors with a high degree of spatial resolution using standard imaging approaches. To achieve this, an ex vivo micro computed tomography (µCT) imaging approach was developed to visualize the intratumoral distribution of contrast agent-loaded PEGylated liposomes. Using this semi-quantitative method, whole 3-dimensional (3D) tumor liposome distribution was determined with 17 µm resolution in a phenotypically diverse panel of four preclinical xenograft and patient-derived explant (PDX) tumor models. High-resolution ex vivo μCT imaging revealed striking differences in liposome distribution within tumors in four models with different vascular patterns and densities, stromal contents, and microenvironment morphologies. Following intravenous dosing, the model with the highest density of pericyte-supported vessels showed the greatest liposome accumulation, while the model with vessels present in regions of high α-smooth muscle actin (αSMA) content presented with a large proportion of the liposomes at depths beyond the tumor periphery. The two models with an unsupported vascular network demonstrated a more restricted pattern of liposome distribution. Taken together, vessel distribution and support (the latter indicative of functionality) appear to be key factors determining the accumulation and distribution pattern of liposomes in tumors. Our findings demonstrate that high-resolution 3D visualization of nanomedicine distribution is a useful tool for preclinical nanomedicine research, providing valuable insights into the influence of the tumor vasculature and microenvironment on nanomedicine localization.

摘要

为了提高抗癌纳米药物的临床转化水平,有必要深入了解增强型通透性和保留(EPR)效应这一广泛概念,并详细研究纳米药物在实体瘤中的积累、分布和保留情况。临床前肿瘤中的纳米药物积累已经得到了广泛研究;然而,治疗效果将受到到达肿瘤的载药纳米药物的数量及其在肿瘤中的空间分布的严重影响。使用标准成像方法,以高空间分辨率在实体瘤中对纳米药物分布的异质性进行三维成像仍然是一个挑战。为了实现这一目标,开发了一种离体微计算机断层扫描(µCT)成像方法来可视化载造影剂的聚乙二醇化脂质体在肿瘤内的分布。使用这种半定量方法,在表型多样化的四组临床前异种移植和患者来源的移植瘤(PDX)肿瘤模型中,以 17 µm 的分辨率确定了整个三维(3D)肿瘤脂质体的分布。高分辨率离体 µCT 成像揭示了四种具有不同血管模式和密度、基质含量和微环境形态的肿瘤模型中脂质体分布的显著差异。静脉给药后,具有最高密度周细胞支持血管的模型显示出最大的脂质体积累,而血管存在于高α-平滑肌肌动蛋白(αSMA)含量区域的模型则有很大一部分脂质体位于肿瘤边缘以外的深处。没有支持性血管网络的两个模型显示出更受限的脂质体分布模式。总之,血管分布和支持(后者表明功能)似乎是决定脂质体在肿瘤中积累和分布模式的关键因素。我们的研究结果表明,纳米药物分布的高分辨率 3D 可视化是临床前纳米药物研究的有用工具,为肿瘤血管和微环境对纳米药物定位的影响提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/c6c2f401668a/thnov10p0880g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/d43574855a67/thnov10p0880g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/3393254529f2/thnov10p0880g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/b2a74dd6e1fb/thnov10p0880g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/d730712c3d2e/thnov10p0880g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/5840efd3998e/thnov10p0880g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/753b1db74696/thnov10p0880g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/c6c2f401668a/thnov10p0880g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/d43574855a67/thnov10p0880g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/3393254529f2/thnov10p0880g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/b2a74dd6e1fb/thnov10p0880g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/d730712c3d2e/thnov10p0880g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/5840efd3998e/thnov10p0880g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/753b1db74696/thnov10p0880g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9045/6929971/c6c2f401668a/thnov10p0880g007.jpg

相似文献

[1]
High-resolution 3D visualization of nanomedicine distribution in tumors.

Theranostics. 2020

[2]
Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model.

J Control Release. 2015-4-8

[3]
Multi-modal characterization of vasculature and nanoparticle accumulation in five tumor xenograft models.

J Control Release. 2018-4-21

[4]
Companion Diagnostic Cu-Liposome Positron Emission Tomography Enables Characterization of Drug Delivery to Tumors and Predicts Response to Cancer Nanomedicines.

Theranostics. 2018-3-21

[5]
The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.

Theranostics. 2020

[6]
Dynamic contrast-enhanced micro-computed tomography correlates with 3-dimensional fluorescence ultramicroscopy in antiangiogenic therapy of breast cancer xenografts.

Invest Radiol. 2014-7

[7]
Combining Nanomedicine and Immunotherapy.

Acc Chem Res. 2019-5-23

[8]
Paclitaxel-loaded micelles enhance transvascular permeability and retention of nanomedicines in tumors.

Int J Pharm. 2015-2-20

[9]
Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle.

Sci Transl Med. 2015-11-18

[10]
A mathematical model of the enhanced permeability and retention effect for liposome transport in solid tumors.

PLoS One. 2013-12-2

引用本文的文献

[1]
Patient-derived xenograft models: Current status, challenges, and innovations in cancer research.

Genes Dis. 2025-1-8

[2]
Histopathological biomarkers for predicting the tumour accumulation of nanomedicines.

Nat Biomed Eng. 2024-11

[3]
Strategies for Delivering Nanoparticles across Tumor Blood Vessels.

Adv Funct Mater. 2021-2-17

[4]
Patient-derived xenograft models in cancer therapy: technologies and applications.

Signal Transduct Target Ther. 2023-4-12

[5]
Approaches to Improve EPR-Based Drug Delivery for Cancer Therapy and Diagnosis.

J Pers Med. 2023-2-23

[6]
Evaluation of paclitaxel-loaded polymeric nanoparticles in 3D tumor model: impact of tumor stroma on penetration and efficacy.

Drug Deliv Transl Res. 2023-5

[7]
Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution.

Theranostics. 2022

[8]
Potential impact of tissue molecular heterogeneity on ambient mass spectrometry profiles: a note of caution in choosing the right disease model.

Anal Bioanal Chem. 2021-4

[9]
The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.

Theranostics. 2020

本文引用的文献

[1]
Tumor Chemo-Radiotherapy with Rod-Shaped and Spherical Gold Nano Probes: Shape and Active Targeting Both Matter.

Theranostics. 2019-3-16

[2]
How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation.

Nat Biomed Eng. 2018-11-8

[3]
Enhanced Drug Delivery by Nanoscale Integration of a Nitric Oxide Donor To Induce Tumor Collagen Depletion.

Nano Lett. 2019-1-29

[4]
Imaging Nanomedicine-Based Drug Delivery: a Review of Clinical Studies.

Mol Imaging Biol. 2018-10

[5]
Tumor targeting via EPR: Strategies to enhance patient responses.

Adv Drug Deliv Rev. 2018-7-19

[6]
Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs.

Clin Transl Med. 2018-3-1

[7]
Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment.

Theranostics. 2017-1-7

[8]
Enhancing Nanoparticle Accumulation and Retention in Desmoplastic Tumors via Vascular Disruption for Internal Radiation Therapy.

Theranostics. 2017-1-1

[9]
Cancer nanomedicine: progress, challenges and opportunities.

Nat Rev Cancer. 2017-1

[10]
Size Dependent Kinetics of Gold Nanorods in EPR Mediated Tumor Delivery.

Theranostics. 2016-9-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索