Bioscience, Discovery, Oncology R&D, AstraZeneca, Cambridge, United Kingdom.
Personalised Healthcare and Biomarkers, AstraZeneca, Macclesfield, United Kingdom.
Theranostics. 2020 Jan 1;10(2):880-897. doi: 10.7150/thno.37178. eCollection 2020.
To improve the clinical translation of anti-cancer nanomedicines, it is necessary to begin building specific insights into the broad concept of the Enhanced Permeability and Retention (EPR) effect, using detailed investigations of the accumulation, distribution and retention of nanomedicines in solid tumors. Nanomedicine accumulation in preclinical tumors has been extensively studied; however, treatment efficacy will be heavily influenced by both the quantity of drug-loaded nanomedicines reaching the tumor as well as their spatial distribution throughout the tumor. It remains a challenge to image the heterogeneity of nanomedicine distribution in 3 dimensions within solid tumors with a high degree of spatial resolution using standard imaging approaches. To achieve this, an ex vivo micro computed tomography (µCT) imaging approach was developed to visualize the intratumoral distribution of contrast agent-loaded PEGylated liposomes. Using this semi-quantitative method, whole 3-dimensional (3D) tumor liposome distribution was determined with 17 µm resolution in a phenotypically diverse panel of four preclinical xenograft and patient-derived explant (PDX) tumor models. High-resolution ex vivo μCT imaging revealed striking differences in liposome distribution within tumors in four models with different vascular patterns and densities, stromal contents, and microenvironment morphologies. Following intravenous dosing, the model with the highest density of pericyte-supported vessels showed the greatest liposome accumulation, while the model with vessels present in regions of high α-smooth muscle actin (αSMA) content presented with a large proportion of the liposomes at depths beyond the tumor periphery. The two models with an unsupported vascular network demonstrated a more restricted pattern of liposome distribution. Taken together, vessel distribution and support (the latter indicative of functionality) appear to be key factors determining the accumulation and distribution pattern of liposomes in tumors. Our findings demonstrate that high-resolution 3D visualization of nanomedicine distribution is a useful tool for preclinical nanomedicine research, providing valuable insights into the influence of the tumor vasculature and microenvironment on nanomedicine localization.
为了提高抗癌纳米药物的临床转化水平,有必要深入了解增强型通透性和保留(EPR)效应这一广泛概念,并详细研究纳米药物在实体瘤中的积累、分布和保留情况。临床前肿瘤中的纳米药物积累已经得到了广泛研究;然而,治疗效果将受到到达肿瘤的载药纳米药物的数量及其在肿瘤中的空间分布的严重影响。使用标准成像方法,以高空间分辨率在实体瘤中对纳米药物分布的异质性进行三维成像仍然是一个挑战。为了实现这一目标,开发了一种离体微计算机断层扫描(µCT)成像方法来可视化载造影剂的聚乙二醇化脂质体在肿瘤内的分布。使用这种半定量方法,在表型多样化的四组临床前异种移植和患者来源的移植瘤(PDX)肿瘤模型中,以 17 µm 的分辨率确定了整个三维(3D)肿瘤脂质体的分布。高分辨率离体 µCT 成像揭示了四种具有不同血管模式和密度、基质含量和微环境形态的肿瘤模型中脂质体分布的显著差异。静脉给药后,具有最高密度周细胞支持血管的模型显示出最大的脂质体积累,而血管存在于高α-平滑肌肌动蛋白(αSMA)含量区域的模型则有很大一部分脂质体位于肿瘤边缘以外的深处。没有支持性血管网络的两个模型显示出更受限的脂质体分布模式。总之,血管分布和支持(后者表明功能)似乎是决定脂质体在肿瘤中积累和分布模式的关键因素。我们的研究结果表明,纳米药物分布的高分辨率 3D 可视化是临床前纳米药物研究的有用工具,为肿瘤血管和微环境对纳米药物定位的影响提供了有价值的见解。
Theranostics. 2020
J Control Release. 2018-4-21
Acc Chem Res. 2019-5-23
Sci Transl Med. 2015-11-18
Nat Biomed Eng. 2024-11
Adv Funct Mater. 2021-2-17
Signal Transduct Target Ther. 2023-4-12
J Pers Med. 2023-2-23
Mol Imaging Biol. 2018-10
Adv Drug Deliv Rev. 2018-7-19
Theranostics. 2017-1-7
Nat Rev Cancer. 2017-1
Theranostics. 2016-9-9