Suppr超能文献

基于腋窝淋巴结图像的超声影像组学用于预测乳腺癌淋巴结转移

Ultrasound radiomics based on axillary lymph nodes images for predicting lymph node metastasis in breast cancer.

作者信息

Tang Yu-Long, Wang Bin, Ou-Yang Tao, Lv Wen-Zhi, Tang Shi-Chu, Wei An, Cui Xin-Wu, Huang Jiang-Sheng

机构信息

Department of Thyroid Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.

Department of Medical Ultrasound, Yueyang Central Hospital, Yueyang, China.

出版信息

Front Oncol. 2023 Oct 26;13:1217309. doi: 10.3389/fonc.2023.1217309. eCollection 2023.

Abstract

OBJECTIVES

To determine whether ultrasound radiomics can be used to distinguish axillary lymph nodes (ALN) metastases in breast cancer based on ALN imaging.

METHODS

A total of 147 breast cancer patients with 41 non-metastatic lymph nodes and 109 metastatic lymph nodes were divided into a training set (105 ALN) and a validation set (45 ALN). Radiomics features were extracted from ultrasound images and a radiomics signature (RS) was built. The Intraclass correlation coefficients (ICCs), Spearman correlation analysis, and least absolute shrinkage and selection operator (LASSO) methods were used to select the ALN status-related features. All images were assessed by two radiologists with at least 10 years of experience in ALN ultrasound examination. The performance levels of the model and radiologists in the training and validation subgroups were then evaluated and compared.

RESULT

Radiomics signature accurately predicted the ALN status, achieved an area under the receiver operator characteristic curve of 0.929 (95%CI, 0.881-0.978) and area under curve(AUC) of 0.919 (95%CI, 95%CI, 0.841-0.997) in training and validation cohorts respectively. The radiomics model performed better than two experts' prediction of ALN status in both cohorts (P<0.05). Besides, prediction in subgroups based on baseline clinicopathological information also achieved good discrimination performance, with an AUC of 0.937, 0.918, 0.885, 0.930, and 0.913 in HR+/HER2-, HER2+, triple-negative, tumor sized ≤ 3cm and tumor sized>3 cm, respectively.

CONCLUSION

The radiomics model demonstrated a good ability to predict ALN status in patients with breast cancer, which might provide essential information for decision-making.

摘要

目的

基于腋窝淋巴结(ALN)成像,确定超声放射组学是否可用于区分乳腺癌中的腋窝淋巴结转移。

方法

147例乳腺癌患者共41个非转移性淋巴结和109个转移性淋巴结被分为训练集(105个ALN)和验证集(45个ALN)。从超声图像中提取放射组学特征并构建放射组学特征(RS)。采用组内相关系数(ICC)、Spearman相关分析和最小绝对收缩和选择算子(LASSO)方法选择与ALN状态相关的特征。所有图像均由两位在ALN超声检查方面至少有10年经验的放射科医生进行评估。然后评估并比较模型和放射科医生在训练和验证亚组中的表现水平。

结果

放射组学特征准确预测了ALN状态,在训练队列和验证队列中分别获得受试者操作特征曲线下面积为0.929(95%CI,0.881 - 0.978)和曲线下面积(AUC)为0.919(95%CI,95%CI,0.841 - 0.997)。在两个队列中,放射组学模型在预测ALN状态方面均优于两位专家(P<0.05)。此外,基于基线临床病理信息在亚组中的预测也具有良好的区分性能,在HR+/HER2-、HER2+、三阴性、肿瘤大小≤3cm和肿瘤大小>3cm的亚组中,AUC分别为0.937、0.918、0.885、0.930和0.913。

结论

放射组学模型在预测乳腺癌患者的ALN状态方面表现出良好能力,可为决策提供重要信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1203/10641324/b7979ca22ffa/fonc-13-1217309-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验