Suppr超能文献

深度学习模型可从单导联心电图预测左心异常,为可穿戴设备的开发提供依据。

Deep Learning Models for Predicting Left Heart Abnormalities From Single-Lead Electrocardiogram for the Development of Wearable Devices.

机构信息

Department of Cardiovascular Medicine, The University of Tokyo Hospital.

Division of Cardiology, Mitsui Memorial Hospital.

出版信息

Circ J. 2023 Dec 25;88(1):146-156. doi: 10.1253/circj.CJ-23-0216. Epub 2023 Nov 14.

Abstract

BACKGROUND

Left heart abnormalities are risk factors for heart failure. However, echocardiography is not always available. Electrocardiograms (ECGs), which are now available from wearable devices, have the potential to detect these abnormalities. Nevertheless, whether a model can detect left heart abnormalities from single Lead I ECG data remains unclear.

METHODS AND RESULTS

We developed Lead I ECG models to detect low ejection fraction (EF), wall motion abnormality, left ventricular hypertrophy (LVH), left ventricular dilatation, and left atrial dilatation. We used a dataset comprising 229,439 paired sets of ECG and echocardiography data from 8 facilities, and validated the model using external verification with data from 2 facilities. The area under the receiver operating characteristic curves of our model was 0.913 for low EF, 0.832 for wall motion abnormality, 0.797 for LVH, 0.838 for left ventricular dilatation, and 0.802 for left atrial dilatation. In interpretation tests with 12 cardiologists, the accuracy of the model was 78.3% for low EF and 68.3% for LVH. Compared with cardiologists who read the 12-lead ECGs, the model's performance was superior for LVH and similar for low EF.

CONCLUSIONS

From a multicenter study dataset, we developed models to predict left heart abnormalities using Lead I on the ECG. The Lead I ECG models show superior or equivalent performance to cardiologists using 12-lead ECGs.

摘要

背景

左心异常是心力衰竭的危险因素。然而,超声心动图并不总是可用。现在可从可穿戴设备获得心电图(ECG),有可能检测到这些异常。然而,是否有一种模型可以从单导联 I 心电图数据中检测到左心异常仍不清楚。

方法和结果

我们开发了导联 I 心电图模型来检测低射血分数(EF)、壁运动异常、左心室肥厚(LVH)、左心室扩张和左心房扩张。我们使用了一个包含来自 8 个设施的 229,439 对心电图和超声心动图数据的数据集,并使用来自 2 个设施的数据进行外部验证来验证模型。我们的模型对低 EF、壁运动异常、LVH、左心室扩张和左心房扩张的受试者工作特征曲线下面积分别为 0.913、0.832、0.797、0.838 和 0.802。在 12 位心脏病专家进行的解释测试中,该模型对低 EF 的准确率为 78.3%,对 LVH 的准确率为 68.3%。与阅读 12 导联心电图的心脏病专家相比,该模型在 LVH 方面的表现优于专家,在低 EF 方面的表现与之相当。

结论

从一项多中心研究数据集,我们开发了使用心电图导联 I 预测左心异常的模型。导联 I 心电图模型的性能优于或等同于使用 12 导联心电图的心脏病专家。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验