Department of Cardiovascular Medicine, The University of Tokyo.
Department of Clinical Laboratory, The University of Tokyo.
Int Heart J. 2021;62(6):1332-1341. doi: 10.1536/ihj.21-407.
Deep learning models can be applied to electrocardiograms (ECGs) to detect left ventricular (LV) dysfunction. We hypothesized that applying a deep learning model may improve the diagnostic accuracy of cardiologists in predicting LV dysfunction from ECGs. We acquired 37,103 paired ECG and echocardiography data records of patients who underwent echocardiography between January 2015 and December 2019. We trained a convolutional neural network to identify the data records of patients with LV dysfunction (ejection fraction < 40%) using a dataset of 23,801 ECGs. When tested on an independent set of 7,196 ECGs, we found the area under the receiver operating characteristic curve was 0.945 (95% confidence interval: 0.936-0.954). When 7 cardiologists interpreted 50 randomly selected ECGs from the test dataset of 7,196 ECGs, their accuracy for predicting LV dysfunction was 78.0% ± 6.0%. By referring to the model's output, the cardiologist accuracy improved to 88.0% ± 3.7%, which indicates that model support significantly improved the cardiologist diagnostic accuracy (P = 0.02). A sensitivity map demonstrated that the model focused on the QRS complex when detecting LV dysfunction on ECGs. We developed a deep learning model that can detect LV dysfunction on ECGs with high accuracy. Furthermore, we demonstrated that support from a deep learning model can help cardiologists to identify LV dysfunction on ECGs.
深度学习模型可应用于心电图(ECG)以检测左心室(LV)功能障碍。我们假设应用深度学习模型可能会提高心脏病专家从心电图预测 LV 功能障碍的诊断准确性。我们获取了 2015 年 1 月至 2019 年 12 月间接受超声心动图检查的患者的 37,103 对心电图和超声心动图数据记录。我们使用包含 23,801 份心电图的数据集中的训练卷积神经网络来识别 LV 功能障碍(射血分数 < 40%)患者的数据记录。在对包含 7,196 份心电图的独立数据集进行测试时,我们发现接受者操作特征曲线下面积为 0.945(95%置信区间:0.936-0.954)。当 7 位心脏病专家对 7,196 份心电图测试数据集的 50 份随机心电图进行解释时,他们预测 LV 功能障碍的准确率为 78.0%±6.0%。通过参考模型的输出,心脏病专家的准确率提高到 88.0%±3.7%,这表明模型支持显著提高了心脏病专家的诊断准确性(P=0.02)。敏感性图表明,在心电图上检测 LV 功能障碍时,该模型专注于 QRS 复合体。我们开发了一种可以准确检测心电图上 LV 功能障碍的深度学习模型。此外,我们证明了深度学习模型的支持可以帮助心脏病专家识别心电图上的 LV 功能障碍。