Suppr超能文献

一种基于深度学习的方法在鉴别直径小于1厘米(≤10毫米)的实性肺结节良恶性方面的诊断性能。

Diagnostic performance of a deep learning-based method in differentiating malignant from benign subcentimeter (≤10 mm) solid pulmonary nodules.

作者信息

Liu Jianing, Qi Linlin, Wang Yawen, Li Fenglan, Chen Jiaqi, Cheng Sainan, Zhou Zhen, Yu Yizhou, Wang Jianwei

机构信息

Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Beijing Deepwise & League of PhD Technology Co., Ltd., Beijing, China.

出版信息

J Thorac Dis. 2023 Oct 31;15(10):5475-5484. doi: 10.21037/jtd-23-985. Epub 2023 Sep 19.

Abstract

BACKGROUND

This study assessed the diagnostic performance of a deep learning (DL)-based model for differentiating malignant subcentimeter (≤10 mm) solid pulmonary nodules (SSPNs) from benign ones in computed tomography (CT) images compared against radiologists with 10 and 15 years of experience in thoracic imaging (medium-senior seniority).

METHODS

Overall, 200 SSPNs (100 benign and 100 malignant) were retrospectively collected. Malignancy was confirmed by pathology, and benignity was confirmed by follow-up or pathology. CT images were fed into the DL model to obtain the probability of malignancy (range, 0-100%) for each nodule. According to the diagnostic results, enrolled nodules were classified into benign, malignant, or indeterminate. The accuracy and diagnostic composition of the model were compared with those of the radiologists using the McNemar-Bowker test. Enrolled nodules were divided into 3-6-, 6-8-, and 8-10-mm subgroups. For each subgroup, the diagnostic results of the model were compared with those of the radiologists.

RESULTS

The accuracy of the DL model, in differentiating malignant and benign SSPNs, was significantly higher than that of the radiologists (71.5% 38.5%, P<0.001). The DL model reported more benign or malignant deterministic results and fewer indeterminate results. In subgroup analysis of nodule size, the DL model also yielded higher performance in comparison with that of the radiologists, providing fewer indeterminate results. The accuracy of the two methods in the 3-6-, 6-8-, and 8-10-mm subgroups was 75.5% 28.3% (P<0.001), 62.0% 28.2% (P<0.001), and 77.6% 55.3% (P=0.001), respectively, and the indeterminate results were 3.8% 66.0%, 8.5% 66.2%, and 2.6% 35.5% (all P<0.001), respectively.

CONCLUSIONS

The DL-based method yielded higher performance in comparison with that of the radiologists in differentiating malignant and benign SSPNs. This DL model may reduce uncertainty in diagnosis and improve diagnostic accuracy, especially for SSPNs smaller than 8 mm.

摘要

背景

本研究评估了一种基于深度学习(DL)的模型在计算机断层扫描(CT)图像中区分恶性亚厘米(≤10 mm)实性肺结节(SSPN)与良性结节的诊断性能,并与具有10年和15年胸部影像经验(中高级资历)的放射科医生进行了比较。

方法

总共回顾性收集了200个SSPN(100个良性和100个恶性)。恶性通过病理确诊,良性通过随访或病理确诊。将CT图像输入DL模型以获得每个结节的恶性概率(范围0 - 100%)。根据诊断结果,将纳入的结节分为良性、恶性或不确定。使用McNemar - Bowker检验将模型的准确性和诊断构成与放射科医生的进行比较。纳入的结节分为3 - 6 mm、6 - 8 mm和8 - 10 mm亚组。对于每个亚组,将模型的诊断结果与放射科医生的进行比较。

结果

DL模型在区分恶性和良性SSPN方面的准确性显著高于放射科医生(71.5%对38.5%,P<0.001)。DL模型报告的良性或恶性确定性结果更多,不确定结果更少。在结节大小的亚组分析中,与放射科医生相比,DL模型也表现出更高的性能,提供的不确定结果更少。两种方法在3 - 6 mm、6 - 8 mm和8 - 10 mm亚组中的准确性分别为75.5%对28.3%(P<0.001)、62.0%对28.2%(P<0.001)和77.6%对55.3%(P = 0.001),不确定结果分别为3.8%对66.0%、8.5%对66.2%和2.6%对35.5%(均P<0.001)。

结论

与放射科医生相比,基于DL的方法在区分恶性和良性SSPN方面表现出更高的性能。这种DL模型可能会减少诊断中的不确定性并提高诊断准确性,特别是对于小于8 mm的SSPN。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/082f/10636433/e0c134069249/jtd-15-10-5475-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验