Suppr超能文献

利用人工智能增强医学诊断:聚焦于呼吸系统疾病检测。

Enhancing Medical Diagnosis with AI: A Focus on Respiratory Disease Detection.

作者信息

Sharma Sachin, Pandey Siddhant, Shah Dharmesh

机构信息

Department of Big Data Analytics, Adani Institute of Digital Technology Management, Gandhinagar, Gujarat, India.

Department of Computer Science and Engineering, Institute of Advanced Research, Gandhinagar, Gujarat, India.

出版信息

Indian J Community Med. 2023 Sep-Oct;48(5):709-714. doi: 10.4103/ijcm.ijcm_976_22. Epub 2023 Sep 7.

Abstract

BACKGROUND

Artificial intelligence (AI) is revolutionizing medical diagnosis and healthcare, providing constant support to medical practitioners. Intelligent systems alleviate workload pressure while optimizing practitioner performance. AI and deep learning have also improved medical imaging and audio analysis.

MATERIAL AND METHODS

This research focuses on predicting respiratory diseases using audio recordings from an electronic stethoscope. A convolutional neural network (CNN) was trained on a Respiratory Sound Database, augmented to generate 1,428 audio files. Techniques such as pitch shifting, time stretching, noise addition, time and frequency masking, dynamic range compression, and resampling were employed to increase the diversity and size of the training data.

RESULT

Features were extracted from mono audio files, creating a four layer CNN with 90% accuracy. The software, developed using the CNN model and Streamlit python library, offers a new tool for early and accurate diagnosis, reducing the burden on medical practitioners and enhanci ng their performance. The study highlights AI's potential in respiratory disease detection through audio analysis.

CONCLUSION

The software, developed using the CNN model and Streamlit python library, offers a new tool for early and accurate diagnosis, reducing the burden on medical practitioners and enhancing their performance.

摘要

背景

人工智能(AI)正在彻底改变医学诊断和医疗保健领域,为医疗从业者提供持续支持。智能系统在优化从业者表现的同时减轻了工作量压力。人工智能和深度学习还改善了医学成像和音频分析。

材料与方法

本研究聚焦于利用电子听诊器的录音来预测呼吸系统疾病。在一个呼吸音数据库上训练了一个卷积神经网络(CNN),该数据库经过扩充以生成1428个音频文件。采用了诸如变调、时间拉伸、添加噪声、时间和频率掩蔽、动态范围压缩以及重采样等技术来增加训练数据的多样性和规模。

结果

从单声道音频文件中提取特征,创建了一个准确率达90%的四层CNN。使用CNN模型和Streamlit Python库开发的该软件提供了一种用于早期准确诊断的新工具,减轻了医疗从业者的负担并提高了他们的表现。该研究突出了人工智能通过音频分析在呼吸系统疾病检测中的潜力。

结论

使用CNN模型和Streamlit Python库开发的该软件提供了一种用于早期准确诊断的新工具,减轻了医疗从业者的负担并提高了他们的表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/10637616/8457062ae192/IJCM-48-709-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验