Suppr超能文献

使用人工神经网络早期检测慢性呼吸道疾病急诊科就诊的高峰需求日。

Early Detection of Peak Demand Days of Chronic Respiratory Diseases Emergency Department Visits Using Artificial Neural Networks.

出版信息

IEEE J Biomed Health Inform. 2018 Jan;22(1):285-290. doi: 10.1109/JBHI.2017.2698418. Epub 2017 Apr 26.

Abstract

Chronic respiratory diseases, mainly asthma and chronic obstructive pulmonary disease (COPD), affect the lives of people by limiting their activities in various aspects. Overcrowding of hospital emergency departments (EDs) due to respiratory diseases in certain weather and environmental pollution conditions results in the degradation of quality of medical care, and even limits its availability. A useful tool for ED managers would be to forecast peak demand days so that they can take steps to improve the availability of medical care. In this paper, we developed an artificial neural network based classifier using multilayer perceptron with back propagation algorithm that predicts peak event (peak demand days) of patients with respiratory diseases, mainly asthma and COPD visiting EDs in Dallas County of Texas in the United States. The precision and recall for peak event class were 77.1% and 78.0%, respectively, and those for nonpeak events were 83.9% and 83.2%, respectively. The overall accuracy of the system is 81.0%.

摘要

慢性呼吸系统疾病,主要是哮喘和慢性阻塞性肺疾病(COPD),通过限制患者在各个方面的活动来影响他们的生活。由于某些天气和环境污染条件下呼吸系统疾病导致医院急诊部(ED)人满为患,这导致医疗质量下降,甚至限制了医疗服务的可及性。对于 ED 管理人员来说,一个有用的工具是预测高峰需求日,以便他们可以采取措施提高医疗服务的可用性。在本文中,我们使用带反向传播算法的多层感知器开发了一种基于人工神经网络的分类器,用于预测美国德克萨斯州达拉斯县 ED 就诊的主要为哮喘和 COPD 的呼吸系统疾病患者的高峰事件(高峰需求日)。高峰事件类的精度和召回率分别为 77.1%和 78.0%,而非高峰事件类的精度和召回率分别为 83.9%和 83.2%。该系统的总体准确率为 81.0%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验