Suppr超能文献

队列研究中的地理编码过程:EpiFloripa 老龄化研究中的应用方法。

Geocoding processes in cohort studies: methods applied in the EpiFloripa Aging.

机构信息

Universidade Estadual de Londrina. Programa Associado de Pós-Graduação em Arquitetura e Urbanismo. Londrina, PR, Brasil.

Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Arquitetura e Urbanismo. Florianópolis, SC, Brasil.

出版信息

Rev Saude Publica. 2023 Nov 13;57:88. doi: 10.11606/s1518-8787.2023057004976. eCollection 2023.

Abstract

OBJECTIVE

To describe the process and epidemiological implications of georeferencing in EpiFloripa Aging samples (2009-2019).

METHOD

The EpiFloripa Aging Cohort Study sought to investigate and monitor the living and health conditions of the older adult population (≥ 60) of Florianópolis in three study waves (2009/2010, 2013/2014, 2017/2019). With an automatic geocoding tool, the residential addresses were spatialized, allowing to investigate the effect of the georeferencing sample losses regarding 19 variables, evaluated in the three waves. The influence of different neighborhood definitions (census tracts, Euclidean buffers, and buffers across the street network) was examined in the results of seven variables: area, income, residential density, mixed land use, connectivity, health unit count, and public open space count. Pearson's correlation coefficients were calculated to evaluate the differences between neighborhood definitions according to three variables: contextual income, residential density, and land use diversity.

RESULT

The losses imposed by geocoding (6%, n = 240) caused no statistically significant difference between the total sample and the geocoded sample. The analysis of the study variables suggests that the geocoding process may have included a higher proportion of participants with better income, education, and living conditions. The correlation coefficients showed little correspondence between measures calculated by the three neighborhood definitions (r = 0.37-0.54). The statistical difference between the variables calculated by buffers and census tracts highlights limitations in their use in the description of geospatial attributes.

CONCLUSION

Despite the challenges related to geocoding, such as inconsistencies in addresses, adequate correction and verification mechanisms provided a high rate of assignment of geographic coordinates, the findings suggest that adopting buffers, favored by geocoding, represents a potential for spatial epidemiological analyses by improving the representation of environmental attributes and the understanding of health outcomes.

摘要

目的

描述 EpiFloripa 老龄化样本(2009-2019 年)地理定位的过程和流行病学意义。

方法

EpiFloripa 老龄化队列研究旨在调查和监测弗洛里亚诺波利斯老年人口(≥60 岁)的生活和健康状况,共进行了三次研究波次(2009/2010 年、2013/2014 年、2017/2019 年)。使用自动地理编码工具对居住地址进行空间化,以便调查地理定位样本损失对 19 个变量的影响,这些变量在三个波次中进行了评估。还检验了不同邻里定义(普查区、欧几里得缓冲区和街道网络缓冲区)的影响,研究了七个变量的结果:面积、收入、居住密度、混合土地利用、连通性、卫生单位数量和公共开放空间数量。计算皮尔逊相关系数以评估三个变量(上下文收入、居住密度和土地利用多样性)根据三种邻里定义的差异:邻里定义之间的差异。

结果

地理编码导致的损失(6%,n=240)在总样本和地理编码样本之间没有统计学上的显著差异。对研究变量的分析表明,地理编码过程可能包含了更多收入、教育和生活条件较好的参与者。相关系数表明,三种邻里定义计算的措施之间的一致性很小(r=0.37-0.54)。缓冲区和普查区计算的变量之间的统计差异突出了它们在描述地理空间属性方面的使用局限性。

结论

尽管地理编码存在地址不一致等挑战,但通过适当的校正和验证机制,提供了高地理坐标分配率,调查结果表明,采用缓冲区(地理编码中优先采用的方法)代表了空间流行病学分析的潜力,可提高环境属性的代表性,并更好地理解健康结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dcd/10681526/70afcabf4cfb/1518-8787-rsp-57-88-gf01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验