Suppr超能文献

用于预测CT图像中非小细胞肺癌EGFR突变状态的混合深度多任务学习放射组学方法

Hybrid deep multi-task learning radiomics approach for predicting EGFR mutation status of non-small cell lung cancer in CT images.

作者信息

Gong Jing, Fu Fangqiu, Ma Xiaowen, Wang Ting, Ma Xiangyi, You Chao, Zhang Yang, Peng Weijun, Chen Haiquan, Gu Yajia

机构信息

Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 20003, People's Republic of China.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.

出版信息

Phys Med Biol. 2023 Dec 12;68(24). doi: 10.1088/1361-6560/ad0d43.

Abstract

Epidermal growth factor receptor (EGFR) mutation genotyping plays a pivotal role in targeted therapy for non-small cell lung cancer (NSCLC). We aimed to develop a computed tomography (CT) image-based hybrid deep radiomics model to predict EGFR mutation status in NSCLC and investigate the correlations between deep image and quantitative radiomics features.First, we retrospectively enrolled 818 patients from our centre and 131 patients from The Cancer Imaging Archive database to establish a training cohort (= 654), an independent internal validation cohort (= 164) and an external validation cohort (= 131). Second, to predict EGFR mutation status, we developed three CT image-based models, namely, a multi-task deep neural network (DNN), a radiomics model and a feature fusion model. Third, we proposed a hybrid loss function to train the DNN model. Finally, to evaluate the model performance, we computed the areas under the receiver operating characteristic curves (AUCs) and decision curve analysis curves of the models.For the two validation cohorts, the feature fusion model achieved AUC values of 0.86 ± 0.03 and 0.80 ± 0.05, which were significantly higher than those of the single-task DNN and radiomics models (all< 0.05). There was no significant difference between the feature fusion and the multi-task DNN models (> 0.8). The binary prediction scores showed excellent prognostic value in predicting disease-free survival (= 0.02) and overall survival (< 0.005) for validation cohort 2.The results demonstrate that (1) the feature fusion and multi-task DNN models achieve significantly higher performance than that of the conventional radiomics and single-task DNN models, (2) the feature fusion model can decode the imaging phenotypes representing NSCLC heterogeneity related to both EGFR mutation and patient NSCLC prognosis, and (3) high correlations exist between some deep image and radiomics features.

摘要

表皮生长因子受体(EGFR)突变基因分型在非小细胞肺癌(NSCLC)的靶向治疗中起着关键作用。我们旨在开发一种基于计算机断层扫描(CT)图像的混合深度放射组学模型,以预测NSCLC中的EGFR突变状态,并研究深度图像与定量放射组学特征之间的相关性。首先,我们回顾性纳入了来自本中心的818例患者和来自癌症影像存档数据库的131例患者,以建立一个训练队列(=654)、一个独立的内部验证队列(=164)和一个外部验证队列(=131)。其次,为了预测EGFR突变状态,我们开发了三种基于CT图像的模型,即多任务深度神经网络(DNN)、放射组学模型和特征融合模型。第三,我们提出了一种混合损失函数来训练DNN模型。最后,为了评估模型性能,我们计算了模型的受试者工作特征曲线(AUC)下面积和决策曲线分析曲线。对于两个验证队列,特征融合模型的AUC值分别为0.86±0.03和0.80±0.05,显著高于单任务DNN和放射组学模型(均<0.05)。特征融合模型与多任务DNN模型之间无显著差异(>0.8)。二元预测评分在预测验证队列2的无病生存期(=0.02)和总生存期(<0.005)方面显示出优异的预后价值。结果表明:(1)特征融合和多任务DNN模型的性能显著高于传统放射组学和单任务DNN模型;(2)特征融合模型可以解码代表与EGFR突变和患者NSCLC预后相关的NSCLC异质性的成像表型;(3)一些深度图像和放射组学特征之间存在高度相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验