Median Technologies, F-06560 Valbonne, France.
Centre Antoine Lacassagne, F-06100 Nice, France.
Int J Mol Sci. 2023 Jul 14;24(14):11433. doi: 10.3390/ijms241411433.
Assessment of the quality and current performance of computed tomography (CT) radiomics-based models in predicting epidermal growth factor receptor (EGFR) mutation status in patients with non-small-cell lung carcinoma (NSCLC). Two medical literature databases were systematically searched, and articles presenting original studies on CT radiomics-based models for predicting EGFR mutation status were retrieved. Forest plots and related statistical tests were performed to summarize the model performance and inter-study heterogeneity. The methodological quality of the selected studies was assessed via the Radiomics Quality Score (RQS). The performance of the models was evaluated using the area under the curve (ROC AUC). The range of the Risk RQS across the selected articles varied from 11 to 24, indicating a notable heterogeneity in the quality and methodology of the included studies. The average score was 15.25, which accounted for 42.34% of the maximum possible score. The pooled Area Under the Curve (AUC) value was 0.801, indicating the accuracy of CT radiomics-based models in predicting the EGFR mutation status. CT radiomics-based models show promising results as non-invasive alternatives for predicting EGFR mutation status in NSCLC patients. However, the quality of the studies using CT radiomics-based models varies widely, and further harmonization and prospective validation are needed before the generalization of these models.
评估基于 CT 影像组学的模型在预测非小细胞肺癌(NSCLC)患者表皮生长因子受体(EGFR)突变状态方面的质量和当前性能。系统地检索了两个医学文献数据库,并检索了提出基于 CT 影像组学模型预测 EGFR 突变状态的原始研究的文章。绘制森林图并进行相关统计检验以总结模型性能和研究间异质性。使用影像组学质量评分(RQS)评估选定研究的方法学质量。使用曲线下面积(ROC AUC)评估模型的性能。在选定的文章中,风险 RQS 的范围从 11 到 24 不等,表明纳入研究的质量和方法存在显著异质性。平均得分为 15.25,占最大可能分数的 42.34%。汇总的曲线下面积(AUC)值为 0.801,表明基于 CT 影像组学的模型在预测 EGFR 突变状态方面具有较高的准确性。基于 CT 影像组学的模型显示出作为预测 NSCLC 患者 EGFR 突变状态的非侵入性替代方法的有前途的结果。然而,使用 CT 影像组学模型的研究质量差异很大,在推广这些模型之前,需要进一步协调和前瞻性验证。