Suppr超能文献

基于影像组学和临床特征的非小细胞肺癌表皮生长因子受体突变状态预测模型

TRANS: a prediction model for EGFR mutation status in NSCLC based on radiomics and clinical features.

作者信息

Chen Zhigang, Lu Huiying, Liu Ao, Weng Jia, Gan Lei, Zhou Lina, Ding Xiao, Li Shicheng

机构信息

Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.

Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Shandong, China.

出版信息

Respir Res. 2025 Jun 5;26(1):211. doi: 10.1186/s12931-025-03287-6.

Abstract

BACKGROUND

Early detection of epidermal growth factor receptor (EGFR) is critical for guiding therapeutic decisions in non-small-cell lung cancer (NSCLC). The study aims to develop a predictive model for EGFR mutations with multicohort data.

METHODS

The study enrolled 254 NSCLC patients of four cohorts: the Affiliated Hospital of Qingdao University (AHQU, n = 54), the Second Affiliated Hospital of Soochow University (SAHSU, n = 78), TCGA-NSCLC (n = 91), and CPTAC-NSCLC (n = 31). Radiomic features were extracted using the LIFEx software. The least absolute shrinkage and selection operator (LASSO) algorithm was utilized to select predictive features of CT radiomics, clinical data, and RNA sequencing, which were evaluated using receiver operating characteristic (ROC) curves. A nomogram was developed by integrating predictive features. Biological functions were analyzed utilizing RNA sequencing data.

RESULTS

Eight radiomic features, four clinical features, and seven genomic features were selected to construct distinct signatures. Through internal 5-fold cross-validation, the first two signatures demonstrated notable discrimination capabilities for distinguishing between mutated and wild-type EGFR, resulting in area under the curve (AUC) values of 0.79 (± 0.08) and 0.74 (± 0.06), respectively. The combination of clinical variables and radiomics signature resulted in an increased AUC of 0.84 (± 0.01). This combined model was named TRANS, representing TTF-1, radiomic signature, AE1/AE3, NapsinA, and stage, which uses radiomics and routine immunohistochemistry markers as inputs. High-risk TRANS was observed to be associated with poor overall survival, and showed relationships with high T cell infiltration and response to PD-1 immunotherapy.

CONCLUSIONS

The TRANS model demonstrated favorable ability in predicting EGFR mutation status in NSCLC, providing a valuable approach for optimizing therapeutic strategies in clinical practice.

摘要

背景

表皮生长因子受体(EGFR)的早期检测对于指导非小细胞肺癌(NSCLC)的治疗决策至关重要。本研究旨在利用多队列数据开发一种EGFR突变预测模型。

方法

本研究纳入了四个队列的254例NSCLC患者:青岛大学附属医院(AHQU,n = 54)、苏州大学附属第二医院(SAHSU,n = 78)、TCGA-NSCLC(n = 91)和CPTAC-NSCLC(n = 31)。使用LIFEx软件提取放射组学特征。采用最小绝对收缩和选择算子(LASSO)算法选择CT放射组学、临床数据和RNA测序的预测特征,并使用受试者工作特征(ROC)曲线进行评估。通过整合预测特征构建列线图。利用RNA测序数据分析生物学功能。

结果

选择了8个放射组学特征、4个临床特征和7个基因组特征来构建不同的特征。通过内部5折交叉验证,前两个特征在区分突变型和野生型EGFR方面表现出显著的辨别能力,曲线下面积(AUC)值分别为0.79(±0.08)和0.74(±0.06)。临床变量和放射组学特征的组合使AUC增加到0.84(±0.01)。这个组合模型被命名为TRANS,代表TTF-1、放射组学特征、AE1/AE3、NapsinA和分期,它使用放射组学和常规免疫组化标记作为输入。观察到高风险的TRANS与较差的总生存期相关,并且与高T细胞浸润和对PD-1免疫治疗的反应有关。

结论

TRANS模型在预测NSCLC中的EGFR突变状态方面表现出良好的能力,为临床实践中优化治疗策略提供了一种有价值的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a349/12139132/37dc698675ff/12931_2025_3287_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验