Suppr超能文献

用于推进神经退行性疾病分析的曲率估计技术:机器学习和深度学习方法的系统综述

Curvature estimation techniques for advancing neurodegenerative disease analysis: a systematic review of machine learning and deep learning approaches.

作者信息

Sadegh-Zadeh Seyed-Ali, Sadeghzadeh Nasrin, Sedighi Bahareh, Rahpeyma Elaheh, Nilgounbakht Mahdiyeh, Barati Mohammad Amin

机构信息

Department of Computing, School of Digital, Technologies and Arts, Staffordshire University Stoke-on-Trent, United Kingdom.

Faculty of Mathematics, University of Qom Qom, Iran.

出版信息

Am J Neurodegener Dis. 2025 Feb 25;14(1):1-33. doi: 10.62347/DZNQ2482. eCollection 2025.

Abstract

Neurodegenerative diseases present complex challenges that demand advanced analytical techniques to decode intricate brain structures and their changes over time. Curvature estimation within datasets has emerged as a critical tool in areas like neuroimaging and pattern recognition, with significant applications in diagnosing and understanding neurodegenerative diseases. This systematic review assesses state-of-the-art curvature estimation methodologies, covering classical mathematical techniques, machine learning, deep learning, and hybrid methods. Analysing 105 research papers from 2010 to 2023, we explore how each approach enhances our understanding of structural variations in neurodegenerative pathology. Our findings highlight a shift from classical methods to machine learning and deep learning, with neural network regression and convolutional neural networks gaining traction due to their precision in handling complex geometries and data-driven modelling. Hybrid methods further demonstrate the potential to merge classical and modern techniques for robust curvature estimation. This comprehensive review aims to equip researchers and clinicians with insights into effective curvature estimation methods, supporting the development of enhanced diagnostic tools and interventions for neurodegenerative diseases.

摘要

神经退行性疾病带来了复杂的挑战,需要先进的分析技术来解码复杂的脑结构及其随时间的变化。数据集中的曲率估计已成为神经影像学和模式识别等领域的关键工具,在诊断和理解神经退行性疾病方面有重要应用。本系统综述评估了当前最先进的曲率估计方法,涵盖经典数学技术、机器学习、深度学习和混合方法。通过分析2010年至2023年的105篇研究论文,我们探讨了每种方法如何增进我们对神经退行性病变中结构变化的理解。我们的研究结果突出了从经典方法向机器学习和深度学习的转变,神经网络回归和卷积神经网络因其在处理复杂几何形状和数据驱动建模方面的精确性而受到关注。混合方法进一步展示了融合经典和现代技术以进行稳健曲率估计的潜力。这一全面综述旨在为研究人员和临床医生提供有关有效曲率估计方法的见解,支持开发针对神经退行性疾病的增强诊断工具和干预措施。

相似文献

7
Medical image analysis using deep learning algorithms.医学影像的深度学习算法分析。
Front Public Health. 2023 Nov 7;11:1273253. doi: 10.3389/fpubh.2023.1273253. eCollection 2023.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验