Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany.
Bruker Daltonics GmbH & Co. KG, Bremen, Germany.
Nat Commun. 2023 Nov 18;14(1):7495. doi: 10.1038/s41467-023-43298-9.
Trapped ion mobility spectrometry (TIMS) adds an additional separation dimension to mass spectrometry (MS) imaging, however, the lack of fragmentation spectra (MS) impedes confident compound annotation in spatial metabolomics. Here, we describe spatial ion mobility-scheduled exhaustive fragmentation (SIMSEF), a dataset-dependent acquisition strategy that augments TIMS-MS imaging datasets with MS spectra. The fragmentation experiments are systematically distributed across the sample and scheduled for multiple collision energies per precursor ion. Extendable data processing and evaluation workflows are implemented into the open source software MZmine. The workflow and annotation capabilities are demonstrated on rat brain tissue thin sections, measured by matrix-assisted laser desorption/ionisation (MALDI)-TIMS-MS, where SIMSEF enables on-tissue compound annotation through spectral library matching and rule-based lipid annotation within MZmine and maps the (un)known chemical space by molecular networking. The SIMSEF algorithm and data analysis pipelines are open source and modular to provide a community resource.
被困离子淌度谱(TIMS)为质谱(MS)成像增加了额外的分离维度,然而,缺乏碎片化谱(MS)阻碍了在空间代谢组学中对化合物进行准确注释。在这里,我们描述了空间离子淌度-预定的完全碎片化(SIMSEF),这是一种依赖于数据集的采集策略,它通过 MS 谱增强了 TIMS-MS 成像数据集。碎片化实验在样品中系统分布,并为每个前体离子分配多个碰撞能量。可扩展的数据处理和评估工作流程已被集成到开源软件 MZmine 中。该工作流程和注释功能已在大鼠脑组织薄片上进行了演示,这些薄片通过基质辅助激光解吸/电离(MALDI)-TIMS-MS 进行测量,其中 SIMSEF 通过谱库匹配和基于规则的脂质注释实现了组织内化合物注释,并通过分子网络映射(未知)化学空间。SIMSEF 算法和数据分析管道是开源和模块化的,为社区提供了资源。