Suppr超能文献

SMART:用于质谱成像的数据分析报告标准。

SMART: A data reporting standard for mass spectrometry imaging.

机构信息

FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA.

Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina, USA.

出版信息

J Mass Spectrom. 2023 Feb;58(2):e4904. doi: 10.1002/jms.4904.

Abstract

Mass spectrometry imaging (MSI) is an important analytical technique that simultaneously reports the spatial location and abundance of detected ions in biological, chemical, clinical, and pharmaceutical studies. As MSI grows in popularity, it has become evident that data reporting varies among different research groups and between techniques. The lack of consistency in data reporting inherently creates additional challenges in comparing intra- and inter-laboratory MSI data. In this tutorial, we propose a unified data reporting system, SMART, based on the common features shared between techniques. While there are limitations to any reporting system, SMART was decided upon after significant discussion to more easily understand and benchmark MSI data. SMART is not intended to be comprehensive but rather capture essential baseline information for a given MSI study; this could be within a study (e.g., effect of spot size on the measured ion signals) or between two studies (e.g., different MSI platform technologies applied to the same tissue type). This tutorial does not attempt to address the confidence with which annotations are made nor does it deny the importance of other parameters that are not included in the current SMART format. Ultimately, the goal of this tutorial is to discuss the necessity of establishing a uniform reporting system to communicate MSI data in publications and presentations in a simple format to readily interpret the parameters and baseline outcomes of the data.

摘要

质谱成像(MSI)是一种重要的分析技术,可同时报告生物、化学、临床和药物研究中检测到的离子的空间位置和丰度。随着 MSI 的普及,不同研究小组之间以及不同技术之间的数据报告差异变得明显。数据报告缺乏一致性,不可避免地给比较实验室内部和实验室之间的 MSI 数据带来了额外的挑战。在本教程中,我们基于技术之间共享的共同特征,提出了一个统一的数据报告系统 SMART。虽然任何报告系统都存在局限性,但 SMART 在经过充分讨论后被选中,以更轻松地理解和基准测试 MSI 数据。SMART 的目的不是全面涵盖,而是为给定的 MSI 研究捕获基本的基线信息;这可以是在一项研究中(例如,斑点大小对测量离子信号的影响),也可以是在两项研究之间(例如,相同组织类型应用不同的 MSI 平台技术)。本教程不试图解决注释的置信度问题,也不否认当前 SMART 格式未包含的其他参数的重要性。最终,本教程的目的是讨论建立一个统一的报告系统的必要性,以便以简单的格式在出版物和演示中交流 MSI 数据,从而轻松解释数据的参数和基线结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1895/10078510/abdc04d024e8/JMS-58-0-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验