Suppr超能文献

一种用于从COVID-19 CT图像中分割肺部病变的有效深度神经网络。

An Effective Deep Neural Network for Lung Lesions Segmentation From COVID-19 CT Images.

作者信息

Chen Cheng, Zhou Kangneng, Zha Muxi, Qu Xiangyan, Guo Xiaoyu, Chen Hongyu, Wang Zhiliang, Xiao Ruoxiu

机构信息

School of Computer and Communication EngineeringUniversity of Science and Technology Beijing Beijing 100083 China.

Institute of Artificial IntelligenceUniversity of Science and Technology Beijing Beijing 100083 China.

出版信息

IEEE Trans Industr Inform. 2021 Feb 12;17(9):6528-6538. doi: 10.1109/TII.2021.3059023. eCollection 2021 Sep.

Abstract

Automatic segmentation of lung lesions from COVID-19 computed tomography (CT) images can help to establish a quantitative model for diagnosis and treatment. For this reason, this article provides a new segmentation method to meet the needs of CT images processing under COVID-19 epidemic. The main steps are as follows: First, the proposed region of interest extraction implements patch mechanism strategy to satisfy the applicability of 3-D network and remove irrelevant background. Second, 3-D network is established to extract spatial features, where 3-D attention model promotes network to enhance target area. Then, to improve the convergence of network, a combination loss function is introduced to lead gradient optimization and training direction. Finally, data augmentation and conditional random field are applied to realize data resampling and binary segmentation. This method was assessed with some comparative experiment. By comparison, the proposed method reached the highest performance. Therefore, it has potential clinical applications.

摘要

从新冠肺炎计算机断层扫描(CT)图像中自动分割肺部病变有助于建立诊断和治疗的定量模型。因此,本文提供了一种新的分割方法,以满足新冠肺炎疫情下CT图像处理的需求。主要步骤如下:首先,所提出的感兴趣区域提取采用了补丁机制策略,以满足三维网络的适用性并去除无关背景。其次,建立三维网络以提取空间特征,其中三维注意力模型促进网络增强目标区域。然后,为了提高网络的收敛性,引入了组合损失函数来引导梯度优化和训练方向。最后,应用数据增强和条件随机场来实现数据重采样和二值分割。该方法通过一些对比实验进行了评估。通过比较,所提出的方法达到了最高性能。因此,它具有潜在的临床应用价值。

相似文献

1
An Effective Deep Neural Network for Lung Lesions Segmentation From COVID-19 CT Images.
IEEE Trans Industr Inform. 2021 Feb 12;17(9):6528-6538. doi: 10.1109/TII.2021.3059023. eCollection 2021 Sep.
2
Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
Med Phys. 2021 Nov;48(11):7141-7153. doi: 10.1002/mp.15204. Epub 2021 Sep 13.
3
DUDA-Net: a double U-shaped dilated attention network for automatic infection area segmentation in COVID-19 lung CT images.
Int J Comput Assist Radiol Surg. 2021 Sep;16(9):1425-1434. doi: 10.1007/s11548-021-02418-w. Epub 2021 Jun 5.
4
DW-UNet: Loss Balance under Local-Patch for 3D Infection Segmentation from COVID-19 CT Images.
Diagnostics (Basel). 2021 Oct 20;11(11):1942. doi: 10.3390/diagnostics11111942.
6
A teacher-student framework with Fourier Transform augmentation for COVID-19 infection segmentation in CT images.
Biomed Signal Process Control. 2023 Jan;79:104250. doi: 10.1016/j.bspc.2022.104250. Epub 2022 Sep 26.
7
ADU-Net: An Attention Dense U-Net based deep supervised DNN for automated lesion segmentation of COVID-19 from chest CT images.
Biomed Signal Process Control. 2023 Aug;85:104974. doi: 10.1016/j.bspc.2023.104974. Epub 2023 Apr 21.
8
Automated vessel segmentation in lung CT and CTA images via deep neural networks.
J Xray Sci Technol. 2021;29(6):1123-1137. doi: 10.3233/XST-210955.

引用本文的文献

1
Sparse scanning encoding and neural network decoding for compressed photoacoustic microscopy.
Photoacoustics. 2025 Aug 6;45:100757. doi: 10.1016/j.pacs.2025.100757. eCollection 2025 Oct.
2
Lung Segmentation with Lightweight Convolutional Attention Residual U-Net.
Diagnostics (Basel). 2025 Mar 27;15(7):854. doi: 10.3390/diagnostics15070854.
3
Segmenting and classifying lung diseases with M-Segnet and Hybrid Squeezenet-CNN architecture on CT images.
PLoS One. 2024 May 16;19(5):e0302507. doi: 10.1371/journal.pone.0302507. eCollection 2024.
5
Deep Learning Framework for Liver Segmentation from -Weighted MRI Images.
Sensors (Basel). 2023 Nov 1;23(21):8890. doi: 10.3390/s23218890.
7
Exploiting multi-granularity visual features for retinal layer segmentation in human eyes.
Front Bioeng Biotechnol. 2023 Jun 1;11:1191803. doi: 10.3389/fbioe.2023.1191803. eCollection 2023.
8
SuperMini-seg: An ultra lightweight network for COVID-19 lung infection segmentation from CT images.
Biomed Signal Process Control. 2023 Aug;85:104896. doi: 10.1016/j.bspc.2023.104896. Epub 2023 Mar 21.
9
Review on the Evaluation and Development of Artificial Intelligence for COVID-19 Containment.
Sensors (Basel). 2023 Jan 3;23(1):527. doi: 10.3390/s23010527.
10
MIC-Net: A deep network for cross-site segmentation of COVID-19 infection in the fog-assisted IoMT.
Inf Sci (N Y). 2023 Apr;623:20-39. doi: 10.1016/j.ins.2022.12.017. Epub 2022 Dec 13.

本文引用的文献

1
COVID-19 pandemic: A multifaceted challenge for science and healthcare.
Trends Anaesth Crit Care. 2020 Oct;34:1-3. doi: 10.1016/j.tacc.2020.08.009. Epub 2020 Sep 20.
2
MiniSeg: An Extremely Minimum Network Based on Lightweight Multiscale Learning for Efficient COVID-19 Segmentation.
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):8570-8584. doi: 10.1109/TNNLS.2022.3230821. Epub 2024 Jun 3.
3
COVID TV-Unet: Segmenting COVID-19 chest CT images using connectivity imposed Unet.
Comput Methods Programs Biomed Update. 2021;1:100007. doi: 10.1016/j.cmpbup.2021.100007. Epub 2021 Apr 20.
4
Imaging Profile of the COVID-19 Infection: Radiologic Findings and Literature Review.
Radiol Cardiothorac Imaging. 2020 Feb 13;2(1):e200034. doi: 10.1148/ryct.2020200034. eCollection 2020 Feb.
5
FSS-2019-nCov: A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection.
Knowl Based Syst. 2021 Jan 5;212:106647. doi: 10.1016/j.knosys.2020.106647. Epub 2020 Dec 4.
6
Pathological lung segmentation in chest CT images based on improved random walker.
Comput Methods Programs Biomed. 2021 Mar;200:105864. doi: 10.1016/j.cmpb.2020.105864. Epub 2020 Nov 25.
7
The sensitivity and specificity of chest CT in the diagnosis of COVID-19.
Eur Radiol. 2021 May;31(5):2819-2824. doi: 10.1007/s00330-020-07347-x. Epub 2020 Oct 13.
10
Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation.
IEEE Trans Med Imaging. 2020 Dec;39(12):3868-3878. doi: 10.1109/TMI.2020.3006437. Epub 2020 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验