Suppr超能文献

FSS-2019-nCov:一种用于新型冠状病毒肺炎感染半监督少样本分割的深度学习架构

FSS-2019-nCov: A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection.

作者信息

Abdel-Basset Mohamed, Chang Victor, Hawash Hossam, Chakrabortty Ripon K, Ryan Michael

机构信息

Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharqiyah, 44519, Egypt.

School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK.

出版信息

Knowl Based Syst. 2021 Jan 5;212:106647. doi: 10.1016/j.knosys.2020.106647. Epub 2020 Dec 4.

Abstract

The newly discovered coronavirus (COVID-19) pneumonia is providing major challenges to research in terms of diagnosis and disease quantification. Deep-learning (DL) techniques allow extremely precise image segmentation; yet, they necessitate huge volumes of manually labeled data to be trained in a supervised manner. Few-Shot Learning (FSL) paradigms tackle this issue by learning a novel category from a small number of annotated instances. We present an innovative semi-supervised few-shot segmentation (FSS) approach for efficient segmentation of 2019-nCov infection (FSS-2019-nCov) from only a few amounts of annotated lung CT scans. The key challenge of this study is to provide accurate segmentation of COVID-19 infection from a limited number of annotated instances. For that purpose, we propose a novel dual-path deep-learning architecture for FSS. Every path contains encoder-decoder (E-D) architecture to extract high-level information while maintaining the channel information of COVID-19 CT slices. The E-D architecture primarily consists of three main modules: a feature encoder module, a context enrichment (CE) module, and a feature decoder module. We utilize the pre-trained ResNet34 as an encoder backbone for feature extraction. The CE module is designated by a newly introduced proposed Smoothed Atrous Convolution (SAC) block and Multi-scale Pyramid Pooling (MPP) block. The conditioner path takes the pairs of CT images and their labels as input and produces a relevant knowledge representation that is transferred to the segmentation path to be used to segment the new images. To enable effective collaboration between both paths, we propose an adaptive recombination and recalibration (RR) module that permits intensive knowledge exchange between paths with a trivial increase in computational complexity. The model is extended to multi-class labeling for various types of lung infections. This contribution overcomes the limitation of the lack of large numbers of COVID-19 CT scans. It also provides a general framework for lung disease diagnosis in limited data situations.

摘要

新发现的冠状病毒(COVID-19)肺炎在诊断和疾病量化研究方面带来了重大挑战。深度学习(DL)技术能够实现极其精确的图像分割;然而,它们需要大量人工标注的数据进行有监督训练。少样本学习(FSL)范式通过从少量带注释的实例中学习新类别来解决这一问题。我们提出了一种创新的半监督少样本分割(FSS)方法,用于仅从少量带注释的肺部CT扫描中高效分割2019 - nCov感染(FSS - 2019 - nCov)。本研究的关键挑战在于从有限数量的带注释实例中准确分割出COVID - 19感染区域。为此,我们提出了一种用于FSS的新型双路径深度学习架构。每条路径都包含编码器 - 解码器(E - D)架构,以提取高级信息,同时保留COVID - 19 CT切片的通道信息。E - D架构主要由三个主要模块组成:特征编码器模块、上下文增强(CE)模块和特征解码器模块。我们利用预训练的ResNet34作为特征提取的编码器主干。CE模块由新引入的平滑空洞卷积(SAC)块和多尺度金字塔池化(MPP)块指定。条件路径将CT图像对及其标签作为输入,并生成相关的知识表示,该表示被传输到分割路径以用于分割新图像。为了使两条路径之间能够有效协作,我们提出了一种自适应重组和重新校准(RR)模块,该模块允许在路径之间进行密集的知识交换,而计算复杂度仅有轻微增加。该模型扩展到了针对各种类型肺部感染的多类别标注。这一成果克服了缺乏大量COVID - 19 CT扫描数据的局限性。它还为有限数据情况下的肺部疾病诊断提供了一个通用框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/7836902/1b8d1f3a4bc8/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验