Department of Radiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy.
Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Eur Radiol. 2024 Jun;34(6):3612-3623. doi: 10.1007/s00330-023-10347-2. Epub 2023 Nov 20.
While the link between carotid plaque composition and cerebrovascular vascular (CVE) events is recognized, the role of calcium configuration remains unclear. This study aimed to develop and validate a CT angiography (CTA)-based machine learning (ML) model that uses carotid plaques 6-type calcium grading, and clinical parameters to identify CVE patients with bilateral plaques.
We conducted a multicenter, retrospective diagnostic study (March 2013-May 2020) approved by the institutional review board. We included adults (18 +) with bilateral carotid artery plaques, symptomatic patients having recently experienced a carotid territory ischemic event, and asymptomatic patients either after 3 months from symptom onset or with no such event. Four ML models (clinical factors, calcium configurations, and both with and without plaque grading [ML-All-G and ML-All-NG]) and logistic regression on all variables identified symptomatic patients. Internal validation assessed discrimination and calibration. External validation was also performed, and identified important variables and causes of misclassifications.
We included 790 patients (median age 72, IQR [61-80], 42% male, 64% symptomatic) for training and internal validation, and 159 patients (age 68 [63-76], 36% male, 39% symptomatic) for external testing. The ML-All-G model achieved an area-under-ROC curve of 0.71 (95% CI 0.58-0.78; p < .001) and sensitivity 80% (79-81). Performance was comparable on external testing. Calcified plaque, especially the positive rim sign on the right artery in older and hyperlipidemic patients, had a major impact on identifying symptomatic patients.
The developed model can identify symptomatic patients using plaques calcium configuration data and clinical information with reasonable diagnostic accuracy.
The analysis of the type of calcium configuration in carotid plaques into 6 classes, combined with clinical variables, allows for an effective identification of symptomatic patients.
• While the association between carotid plaques composition and cerebrovascular events is recognized, the role of calcium configuration remains unclear. • Machine learning of 6-type plaque grading can identify symptomatic patients. Calcified plaques on the right artery, advanced age, and hyperlipidemia were the most important predictors. • Fast acquisition of CTA enables rapid grading of plaques upon the patient's arrival at the hospital, which streamlines the diagnosis of symptoms using ML.
虽然颈动脉斑块成分与脑血管事件之间存在关联,但钙结构的作用仍不清楚。本研究旨在开发和验证一种基于 CT 血管造影(CTA)的机器学习(ML)模型,该模型使用颈动脉斑块 6 型钙分级和临床参数来识别双侧斑块的 CVE 患者。
我们进行了一项多中心、回顾性诊断研究(2013 年 3 月至 2020 年 5 月),该研究得到了机构审查委员会的批准。我们纳入了双侧颈动脉斑块的成年人(18+)、近期经历过颈动脉区域缺血事件的有症状患者以及无症状患者(发病后 3 个月或无此类事件)。使用所有变量对四个 ML 模型(临床因素、钙结构以及同时包含和不包含斑块分级[ML-All-G 和 ML-All-NG])和逻辑回归进行分析,以识别有症状的患者。内部验证评估了判别和校准。还进行了外部验证,以确定重要变量和分类错误的原因。
我们纳入了 790 名患者(中位年龄 72 岁,IQR[61-80],42%为男性,64%为有症状)进行训练和内部验证,纳入了 159 名患者(年龄 68 岁,IQR[63-76],36%为男性,39%为有症状)进行外部测试。ML-All-G 模型的 ROC 曲线下面积为 0.71(95%CI 0.58-0.78;p<0.001),灵敏度为 80%(79-81)。外部测试的性能相当。在年龄较大和血脂异常的患者中,钙化斑块,尤其是右侧动脉的阳性边缘征,对识别有症状的患者有重要影响。
该模型可以使用斑块钙结构数据和临床信息以合理的诊断准确性识别有症状的患者。
将颈动脉斑块中钙结构类型分析为 6 类,结合临床变量,可以有效地识别有症状的患者。
虽然已经认识到颈动脉斑块成分与脑血管事件之间的关联,但钙结构的作用仍不清楚。
基于斑块分级的 6 型斑块机器学习可以识别有症状的患者。右侧动脉的钙化斑块、高龄和高血脂是最重要的预测因子。
CTA 的快速采集可以在患者到达医院时快速对斑块进行分级,从而使用 ML 简化症状的诊断。