Department of Radiology, Faculty of Medicine, Ege University, İzmir 35100, Türkiye.
School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK.
Tomography. 2024 Oct 9;10(10):1622-1644. doi: 10.3390/tomography10100120.
This study introduces a machine learning (ML) approach to diagnosing carotid artery diseases, including stenosis, aneurysm, and dissection, by leveraging craniocervical computed tomography angiography (CTA) data. A meticulously curated, balanced dataset of 122 patient cases was used, ensuring reproducibility and data quality, and this is publicly accessible at (insert dataset location). The proposed method integrates a super learner model which combines adaptive boosting, gradient boosting, and random forests algorithms, achieving an accuracy of 90%. To enhance model robustness and generalization, techniques such as k-fold cross-validation, bootstrapping, data augmentation, and the synthetic minority oversampling technique (SMOTE) were applied, expanding the dataset to 1000 instances and significantly improving performance for minority classes like aneurysm and dissection. The results highlight the pivotal role of blood vessel structural analysis in diagnosing carotid artery diseases and demonstrate the superior performance of the super learner model in comparison with state-of-the-art (SOTA) methods in terms of both accuracy and robustness. This manuscript outlines the methodology, compares the results with state-of-the-art approaches, and provides insights for future research directions in applying machine learning to medical diagnostics.
本研究提出了一种基于机器学习(ML)的方法,通过利用颅颈计算机断层血管造影(CTA)数据来诊断颈动脉疾病,包括狭窄、瘤和夹层。该研究使用了精心策划、平衡的 122 个患者病例数据集,以确保可重复性和数据质量,该数据集可在(插入数据集位置)处公开获取。所提出的方法集成了一个超级学习者模型,该模型结合了自适应提升、梯度提升和随机森林算法,实现了 90%的准确率。为了增强模型的稳健性和泛化能力,应用了 k 折交叉验证、引导、数据扩充和合成少数类过采样技术(SMOTE)等技术,将数据集扩展到 1000 个实例,并显著提高了动脉瘤和夹层等少数类别的性能。研究结果强调了血管结构分析在诊断颈动脉疾病中的关键作用,并展示了超级学习者模型在准确性和稳健性方面相对于最先进(SOTA)方法的卓越性能。本文概述了该方法,将结果与最先进的方法进行了比较,并为将机器学习应用于医学诊断提供了未来研究方向的见解。