Wang Yucheng, Wu Min, Jin Ruibing, Li Xiaoli, Xie Lihua, Chen Zhenghua
IEEE Trans Neural Netw Learn Syst. 2025 Jan;36(1):753-766. doi: 10.1109/TNNLS.2023.3330487. Epub 2025 Jan 7.
Remaining useful life (RUL) prediction is an essential component for prognostics and health management of a system. Due to the powerful ability of nonlinear modeling, deep learning (DL) models have emerged as leading solutions by capturing temporal dependencies within time series sensory data. However, in RUL prediction tasks, data are typically collected from multiple sensors, introducing spatial dependencies in the form of sensor correlations. Existing methods are limited in effectively modeling and capturing the spatial dependencies, restricting their performance to learn representative features for RUL prediction. To overcome the limitations, we propose a novel LOcal-GlObal correlation fusion-based framework (LOGO). Our approach combines both local and global information to model sensor correlations effectively. From a local perspective, we account for local correlations that represent dynamic changes of sensor relationships in local ranges. Simultaneously, from a global perspective, we capture global correlations that depict relatively stable relations between sensors. An adaptive fusion mechanism is proposed to automatically fuse the correlations from different perspectives. Subsequently, we define sequential micrographs for each sample to effectively capture the fused correlations. Graph neural network (GNN) is introduced to capture the spatial dependencies within each micrograph, and the temporal dependencies between these sequential micrographs are then captured. This approach allows us to effectively model and capture the dependency information within the data for accurate RUL prediction. Extensive experiments have been conducted, verifying the effectiveness of our method.
剩余使用寿命(RUL)预测是系统预测与健康管理的重要组成部分。由于具有强大的非线性建模能力,深度学习(DL)模型通过捕捉时间序列传感数据中的时间依赖性,已成为主要的解决方案。然而,在RUL预测任务中,数据通常是从多个传感器收集的,这就引入了以传感器相关性形式存在的空间依赖性。现有方法在有效建模和捕捉空间依赖性方面存在局限性,限制了它们学习用于RUL预测的代表性特征的性能。为了克服这些局限性,我们提出了一种基于局部-全局相关性融合的新型框架(LOGO)。我们的方法结合了局部和全局信息,以有效地对传感器相关性进行建模。从局部角度来看,我们考虑表示局部范围内传感器关系动态变化的局部相关性。同时,从全局角度来看,我们捕捉描述传感器之间相对稳定关系的全局相关性。提出了一种自适应融合机制来自动融合来自不同角度的相关性。随后,我们为每个样本定义顺序微图,以有效地捕捉融合后的相关性。引入图神经网络(GNN)来捕捉每个微图内的空间依赖性,然后捕捉这些顺序微图之间的时间依赖性。这种方法使我们能够有效地建模和捕捉数据中的依赖性信息,以进行准确的RUL预测。我们进行了大量实验,验证了我们方法的有效性。