Suppr超能文献

通过集成增强型逆变压器和时空图学习进行航空发动机剩余使用寿命预测

Aeroengine remaining useful life prediction via integrating enhanced inverted transformer and spatiotemporal graph learning.

作者信息

Sun Shilong, Ding Hao, Zhao Zida, Zhou Yu, Wang Dong, Xu Wenfu

机构信息

School of Robotics and Advanced Manufacturing, College of Artificial Intelligence, Harbin Institute of Technology, Shenzhen, China; Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics, Shenzhen, China.

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China.

出版信息

ISA Trans. 2025 Aug;163:209-221. doi: 10.1016/j.isatra.2025.05.010. Epub 2025 May 6.

Abstract

Accurate prediction of aeroengine Remaining Useful Life (RUL) is critical for ensuring flight safety, minimizing maintenance costs, and improving operational efficiency. This study proposes a novel model, the Fourier-Enhanced Inverted Transformer with Graph-Augmented Spatiotemporal Modeling (FIT-GSTM), to enhance RUL prediction performance. FIT-GSTM combines an inverted Transformer with a Spatiotemporal Graph Convolutional Network (STGCN) to effectively capture global spatiotemporal dependencies across multi-sensor data. To further enrich feature representation, the model incorporates Fast Fourier Transform (FFT) to extract frequency-domain information and fuses it with time-domain features, enhancing robustness to noise. Additionally, the integration of Memory Tokens and Reversible Instance Normalization (RevIN) strengthens the model's ability to retain long-term dependencies and adapt to heterogeneous data distributions. Experimental evaluations on the C-MAPSS dataset demonstrate that FIT-GSTM achieves superior RUL prediction accuracy and generalization compared to existing methods, highlighting its potential for real-world deployment in aeroengine health management.

摘要

准确预测航空发动机剩余使用寿命(RUL)对于确保飞行安全、降低维护成本和提高运营效率至关重要。本研究提出了一种新型模型,即具有图增强时空建模的傅里叶增强逆变换器(FIT-GSTM),以提高RUL预测性能。FIT-GSTM将逆变换器与时空图卷积网络(STGCN)相结合,以有效捕获多传感器数据中的全局时空依赖性。为了进一步丰富特征表示,该模型结合快速傅里叶变换(FFT)来提取频域信息,并将其与时域特征融合,增强对噪声的鲁棒性。此外,记忆令牌和可逆实例归一化(RevIN)的集成增强了模型保留长期依赖性和适应异构数据分布的能力。在C-MAPSS数据集上的实验评估表明,与现有方法相比,FIT-GSTM实现了卓越的RUL预测精度和泛化能力,突出了其在航空发动机健康管理中实际部署的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验