Sun Shilong, Ding Hao, Zhao Zida, Zhou Yu, Wang Dong, Xu Wenfu
School of Robotics and Advanced Manufacturing, College of Artificial Intelligence, Harbin Institute of Technology, Shenzhen, China; Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics, Shenzhen, China.
College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China.
ISA Trans. 2025 Aug;163:209-221. doi: 10.1016/j.isatra.2025.05.010. Epub 2025 May 6.
Accurate prediction of aeroengine Remaining Useful Life (RUL) is critical for ensuring flight safety, minimizing maintenance costs, and improving operational efficiency. This study proposes a novel model, the Fourier-Enhanced Inverted Transformer with Graph-Augmented Spatiotemporal Modeling (FIT-GSTM), to enhance RUL prediction performance. FIT-GSTM combines an inverted Transformer with a Spatiotemporal Graph Convolutional Network (STGCN) to effectively capture global spatiotemporal dependencies across multi-sensor data. To further enrich feature representation, the model incorporates Fast Fourier Transform (FFT) to extract frequency-domain information and fuses it with time-domain features, enhancing robustness to noise. Additionally, the integration of Memory Tokens and Reversible Instance Normalization (RevIN) strengthens the model's ability to retain long-term dependencies and adapt to heterogeneous data distributions. Experimental evaluations on the C-MAPSS dataset demonstrate that FIT-GSTM achieves superior RUL prediction accuracy and generalization compared to existing methods, highlighting its potential for real-world deployment in aeroengine health management.
准确预测航空发动机剩余使用寿命(RUL)对于确保飞行安全、降低维护成本和提高运营效率至关重要。本研究提出了一种新型模型,即具有图增强时空建模的傅里叶增强逆变换器(FIT-GSTM),以提高RUL预测性能。FIT-GSTM将逆变换器与时空图卷积网络(STGCN)相结合,以有效捕获多传感器数据中的全局时空依赖性。为了进一步丰富特征表示,该模型结合快速傅里叶变换(FFT)来提取频域信息,并将其与时域特征融合,增强对噪声的鲁棒性。此外,记忆令牌和可逆实例归一化(RevIN)的集成增强了模型保留长期依赖性和适应异构数据分布的能力。在C-MAPSS数据集上的实验评估表明,与现有方法相比,FIT-GSTM实现了卓越的RUL预测精度和泛化能力,突出了其在航空发动机健康管理中实际部署的潜力。