Suppr超能文献

基于多尺度时空特征的混合深度神经网络用于航空发动机剩余使用寿命预测

Multi-Scale Temporal-Spatial Feature-Based Hybrid Deep Neural Network for Remaining Useful Life Prediction of Aero-Engine.

作者信息

Liu Zhaofeng, Zheng Xiaoqing, Xue Anke, Ge Ming

机构信息

Hangzhou Dianzi University School of Automation, Hangzhou, Zhejiang 310018, China.

出版信息

ACS Omega. 2024 Nov 18;9(48):47410-47427. doi: 10.1021/acsomega.4c03873. eCollection 2024 Dec 3.

Abstract

Remaining useful life (RUL) prediction is crucial for simplifying maintenance procedures and extending the lifespan of aero-engines. Therefore, research on RUL prediction methods for aero-engines is increasingly gaining attention. In particular, some existing deep neural networks based on multiscale features extraction have achieved certain results in RUL predictions for aero-engines. However, these models often overlook two critical factors that affect RUL prediction performance: (i) different time series data points have varying importance for RUL prediction, and (ii) the connections and similarities between different sensor data in both directions. This paper aims to extract valuable multiscale features from raw monitoring data containing multiple sensor measurements, considering the aforementioned factors, and leverage these features to enhance RUL prediction results. To this end, we propose a novel deep neural network based on multiscale features extraction, named Multi-Scale Temporal-Spatial feature-based hybrid Deep neural Network (MSTSDN). We conduct experiments using two aero-engine data sets, namely C-MAPSS and N-CMAPSS, to evaluate RUL prediction performance of MSTSDN. Experimental results on C-MAPSS data set demonstrate that MSTSDN achieves more accurate and timely RUL predictions compared to 12 existing deep neural networks specifically designed for predicting RUL of aero-engine, especially under multiple operational conditions and fault modes. And experimental results on N-CMAPSS data set eventually indicate that MSTSDN can effectively track and fit with the actual RUL during the engine degradation phase.

摘要

剩余使用寿命(RUL)预测对于简化航空发动机的维护程序和延长其使用寿命至关重要。因此,对航空发动机RUL预测方法的研究越来越受到关注。特别是,一些基于多尺度特征提取的现有深度神经网络在航空发动机的RUL预测中取得了一定的成果。然而,这些模型往往忽略了影响RUL预测性能的两个关键因素:(i)不同的时间序列数据点对RUL预测的重要性各不相同,以及(ii)不同传感器数据在两个方向上的联系和相似性。本文旨在考虑上述因素,从包含多个传感器测量值的原始监测数据中提取有价值的多尺度特征,并利用这些特征来提高RUL预测结果。为此,我们提出了一种基于多尺度特征提取的新型深度神经网络,名为基于多尺度时空特征的混合深度神经网络(MSTSDN)。我们使用两个航空发动机数据集,即C-MAPSS和N-CMAPSS进行实验,以评估MSTSDN的RUL预测性能。在C-MAPSS数据集上的实验结果表明,与专门设计用于预测航空发动机RUL的12个现有深度神经网络相比,MSTSDN实现了更准确、更及时的RUL预测,尤其是在多种运行条件和故障模式下。并且在N-CMAPSS数据集上的实验结果最终表明,MSTSDN能够在发动机退化阶段有效地跟踪并拟合实际的RUL。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99e2/11618428/f246c8efb707/ao4c03873_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验