Suppr超能文献

基于图神经网络的多任务时间序列预测

Multi-Task Time Series Forecasting Based on Graph Neural Networks.

作者信息

Han Xiao, Huang Yongjie, Pan Zhisong, Li Wei, Hu Yahao, Lin Gengyou

机构信息

Command Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China.

出版信息

Entropy (Basel). 2023 Jul 28;25(8):1136. doi: 10.3390/e25081136.

Abstract

Accurate time series forecasting is of great importance in real-world scenarios such as health care, transportation, and finance. Because of the tendency, temporal variations, and periodicity of the time series data, there are complex and dynamic dependencies among its underlying features. In time series forecasting tasks, the features learned by a specific task at the current time step (such as predicting mortality) are related to the features of historical timesteps and the features of adjacent timesteps of related tasks (such as predicting fever). Therefore, capturing dynamic dependencies in data is a challenging problem for learning accurate future prediction behavior. To address this challenge, we propose a cross-timestep feature-sharing multi-task time series forecasting model that can capture global and local dynamic dependencies in time series data. Initially, the global dynamic dependencies of features within each task are captured through a self-attention mechanism. Furthermore, an adaptive sparse graph structure is employed to capture the local dynamic dependencies inherent in the data, which can explicitly depict the correlation between features across timesteps and tasks. Lastly, the cross-timestep feature sharing between tasks is achieved through a graph attention mechanism, which strengthens the learning of shared features that are strongly correlated with a single task. It is beneficial for improving the generalization performance of the model. Our experimental results demonstrate that our method is significantly competitive compared to baseline methods.

摘要

准确的时间序列预测在医疗保健、交通运输和金融等现实场景中具有重要意义。由于时间序列数据的趋势、时间变化和周期性,其潜在特征之间存在复杂的动态依赖关系。在时间序列预测任务中,当前时间步特定任务(如预测死亡率)所学习的特征与历史时间步的特征以及相关任务(如预测发烧)相邻时间步的特征相关。因此,捕捉数据中的动态依赖关系对于学习准确的未来预测行为是一个具有挑战性的问题。为应对这一挑战,我们提出了一种跨时间步特征共享多任务时间序列预测模型,该模型可以捕捉时间序列数据中的全局和局部动态依赖关系。首先,通过自注意力机制捕捉每个任务内特征的全局动态依赖关系。此外,采用自适应稀疏图结构来捕捉数据中固有的局部动态依赖关系,它可以明确描述跨时间步和任务的特征之间的相关性。最后,通过图注意力机制实现任务间的跨时间步特征共享,这加强了与单个任务高度相关的共享特征的学习。这有利于提高模型的泛化性能。我们的实验结果表明,与基线方法相比,我们的方法具有显著的竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e6a/10453913/3862e408ed72/entropy-25-01136-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验