Suppr超能文献

利用多种细胞死亡模式预测透明细胞肾细胞癌的预后、免疫治疗和药物敏感性。

Leveraging diverse cell-death patterns to predict the prognosis, immunotherapy and drug sensitivity of clear cell renal cell carcinoma.

机构信息

The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.

出版信息

Sci Rep. 2023 Nov 20;13(1):20266. doi: 10.1038/s41598-023-46577-z.

Abstract

Clear cell renal cell carcinoma (ccRCC) poses clinical challenges due to its varied prognosis, tumor microenvironment attributes, and responses to immunotherapy. We established a novel Programmed Cell Death-related Signature (PRS) for ccRCC assessment, derived through the Least Absolute Shrinkage and Selection Operator (LASSO) regression method. We validated PRS using the E-MTAB-1980 dataset and created PCD-related clusters via non-negative matrix factorization (NMF). Our investigation included an in-depth analysis of immune infiltration scores using various algorithms. Additionally, we integrated data from the Cancer Immunome Atlas (TCIA) for ccRCC immunotherapy insights and leveraged the Genomics of Drug Sensitivity in Cancer (GDSC) database to assess drug sensitivity models. We complemented our findings with single-cell sequencing data and employed the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and qRT-PCR to compare gene expression profiles between cancerous and paracancerous tissues. PRS serves as a valuable tool for prognostication, immune characterization, tumor mutation burden estimation, immunotherapy response prediction, and drug sensitivity assessment in ccRCC. We identify five genes with significant roles in cancer promotion and three genes with cancer-suppressive properties, further validated by qRT-PCR and CPTAC analyses, showcasing gene expression differences in ccRCC tissues. Our study introduces an innovative PCD model that amalgamates diverse cell death patterns to provide accurate predictions for clinical outcomes, mutational profiles, and immune characteristics in ccRCC. Our findings hold promise for advancing personalized treatment strategies in ccRCC patients.

摘要

透明细胞肾细胞癌 (ccRCC) 由于其预后的多样性、肿瘤微环境特征以及对免疫治疗的反应,给临床带来了挑战。我们通过最小绝对值收缩和选择算子 (LASSO) 回归方法建立了一种新的与程序性细胞死亡相关的特征 (PRS) 来评估 ccRCC。我们使用 E-MTAB-1980 数据集验证了 PRS,并通过非负矩阵分解 (NMF) 创建了与 PCD 相关的聚类。我们使用各种算法深入分析了免疫浸润评分,并整合了来自癌症免疫图谱 (TCIA) 的 ccRCC 免疫治疗数据,利用癌症药物敏感性基因组学 (GDSC) 数据库评估药物敏感性模型。我们使用单细胞测序数据补充了我们的发现,并采用临床蛋白质组肿瘤分析联盟 (CPTAC) 和 qRT-PCR 比较了癌组织和癌旁组织之间的基因表达谱。PRS 是一种用于 ccRCC 预后、免疫特征分析、肿瘤突变负担估计、免疫治疗反应预测和药物敏感性评估的有价值的工具。我们确定了五个在癌症促进中具有重要作用的基因和三个具有癌症抑制特性的基因,通过 qRT-PCR 和 CPTAC 分析进一步验证了这些基因,展示了 ccRCC 组织中的基因表达差异。我们的研究引入了一种新的 PCD 模型,该模型整合了多种细胞死亡模式,为 ccRCC 的临床结果、突变谱和免疫特征提供了准确的预测。我们的研究结果为推进 ccRCC 患者的个性化治疗策略提供了新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6628/10662159/677c4cefe262/41598_2023_46577_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验