Suppr超能文献

集成机器学习生存框架基于多样本肾透明细胞癌中巨噬细胞相关基因和程序性细胞死亡特征开发了一种预后模型。

Integrated machine learning survival framework develops a prognostic model based on macrophage-related genes and programmed cell death signatures in a multi-sample Kidney renal clear cell carcinoma.

作者信息

Liu Xuefei, Deng Min, Luo Xing, Li Tingting, Ge Yanan, Li Jianong, Zhao Jiang, Yang Limin

机构信息

Department of Oncology, Northern Theater Command General Hospital, Shenyang, 110016, Liaoning, China.

Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China.

出版信息

Cell Biol Toxicol. 2025 May 30;41(1):93. doi: 10.1007/s10565-025-10023-9.

Abstract

BACKGROUND

Macrophages are closely associated with the progression of Kidney renal clear cell carcinoma (KIRC) and can influence programmed cell death (PCD) of tumour cells. To identify prognostic biomarkers for KIRC, it is essential to investigate the association between macrophage-related genes and PCD characteristics.

METHODS

Clinical details and transcriptome data from 693 KIRC samples were obtained from multiple databases, including TCGA and GEO. Genes associated with macrophages and programmed cell death (PCD) were identified and key regulatory genes and PCD patterns were analyzed. The relationship between macrophages and 18 types of cell death is under investigation with a powerful computational framework. Ten machine learning algorithms, 101 unique combinations of algorithms were utilized to build a macrophage-associated programmed cell death (MacPCD) model to predict KIRC patient survival. Immunohistochemistry and RT-qPCR were used for genetic analysis of MacPCD models.

RESULTS

The MacPCD model is made up of six genes which showed strong predictive power for the prognosis of patients with KIRC. Immunohistochemistry and RT-qPCR showed that among the MacPCD model genes, BID, SLC25A37 and BNIP3L were highly expressed in tumour tissues, whereas ACSL1, SDHB and ALDH2 were highly expressed in normal tissues. Biologically, the high MacPCD group showed higher tumor mutation burden and increased immune cell infiltration and high expression of immunomodulators. In particular, MacPCD was an independent prognostic indicator of KIRC and was the best predictor of KIRC survival (AUC = 0.920) compared with multiple clinical variables (Age, M, and Stage).

CONCLUSION

We used a powerful machine learning framework to highlight the great potential of MacPCD in providing personalised risk assessment and immunotherapy intervention recommendations for KIRC patients.

摘要

背景

巨噬细胞与肾透明细胞癌(KIRC)的进展密切相关,并可影响肿瘤细胞的程序性细胞死亡(PCD)。为了确定KIRC的预后生物标志物,研究巨噬细胞相关基因与PCD特征之间的关联至关重要。

方法

从包括TCGA和GEO在内的多个数据库中获取了693个KIRC样本的临床细节和转录组数据。鉴定了与巨噬细胞和程序性细胞死亡(PCD)相关的基因,并分析了关键调控基因和PCD模式。正在使用强大的计算框架研究巨噬细胞与18种细胞死亡类型之间的关系。利用十种机器学习算法、101种独特的算法组合构建了巨噬细胞相关程序性细胞死亡(MacPCD)模型,以预测KIRC患者的生存率。免疫组织化学和RT-qPCR用于MacPCD模型的基因分析。

结果

MacPCD模型由六个基因组成,这些基因对KIRC患者的预后显示出强大的预测能力。免疫组织化学和RT-qPCR显示,在MacPCD模型基因中,BID、SLC25A37和BNIP3L在肿瘤组织中高表达,而ACSL1、SDHB和ALDH2在正常组织中高表达。从生物学角度来看,高MacPCD组显示出更高的肿瘤突变负担、增加的免疫细胞浸润和免疫调节剂的高表达。特别是,MacPCD是KIRC的独立预后指标,与多个临床变量(年龄、M和分期)相比,是KIRC生存的最佳预测指标(AUC = 0.920)。

结论

我们使用了强大的机器学习框架来突出MacPCD在为KIRC患者提供个性化风险评估和免疫治疗干预建议方面的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c38c/12125160/09167b518bd4/10565_2025_10023_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验