Suppr超能文献

使用响应曲面法(RSM)、方差分析(ANOVA)和人工蜂群算法对藻类生物柴油-柴油-1-癸醇三元混合燃料进行多目标优化,以减轻柴油机运行时的环境污染。

Multi-objective optimization of ternary blends of Algal biodiesel-diesel-1-decanol to mitigate environmental pollution in powering a diesel engine using RSM, ANOVA, and artificial bee colony.

作者信息

Alruqi Mansoor, Sharma Prabhakar, Bora Bhaskor Jyoti, Ghosh Arpita

机构信息

Department of Mechanical Engineering, College of Engineering, Shaqra University, Al Riyadh, 11911, Saudi Arabia.

Energy and Materials Research Group, Department of Mechanical Engineering, College of Engineering, Shaqra University, Shaqra, Saudi Arabia.

出版信息

Environ Sci Pollut Res Int. 2024 Dec;31(60):67664-67677. doi: 10.1007/s11356-023-30948-0. Epub 2023 Nov 21.

Abstract

This research presents an in-depth examination that utilizes a hybrid technique consisting of response surface methodology (RSM) for experimental design, analysis of variance (ANOVA) for model development, and the artificial bee colony (ABC) algorithm for multi-objective optimization. The study aims to enhance engine performance and reduce emissions through the integration of global maxima for brake thermal efficiency (BTE) and global minima for brake-specific fuel consumption (BSFC), hydrocarbon (HC), nitrogen oxides (NOx), and carbon monoxide (CO) emissions into a composite objective function. The relative importance of each objective was determined using weighted combinations. The ABC algorithm effectively explored the parameter space, determining the optimum values for brake mean effective pressure (BMEP) and 1-decanol% in the fuel mix. The results showed that the optimized solution, with a BMEP of 4.91 and a 1-decanol % of 9.82, improved engine performance and cut emissions significantly. Notably, the BSFC was reduced to 0.29 kg/kWh, demonstrating energy efficiency. CO emissions were lowered to 0.598 vol.%, NOx emissions to 1509.91 ppm, and HC emissions to 29.52 vol.%. Furthermore, the optimizing procedure produced an astounding brake thermal efficiency (BTE) of 28.78%, indicating better thermal energy efficiency within the engine. The ABC algorithm enhanced engine performance and lowered emissions overall, highlighting the advantageous trade-offs made by a weighted mix of objectives. The study's findings contribute to more sustainable combustion engine practises by providing crucial insights for upgrading engines with higher efficiency and fewer emissions, thus furthering renewable energy aspirations.

摘要

本研究进行了深入探讨,采用了一种混合技术,该技术由用于实验设计的响应面方法(RSM)、用于模型开发的方差分析(ANOVA)以及用于多目标优化的人工蜂群(ABC)算法组成。该研究旨在通过将制动热效率(BTE)的全局最大值与制动比油耗(BSFC)、碳氢化合物(HC)、氮氧化物(NOx)和一氧化碳(CO)排放的全局最小值整合到一个复合目标函数中,来提高发动机性能并减少排放。使用加权组合确定每个目标的相对重要性。ABC算法有效地探索了参数空间,确定了制动平均有效压力(BMEP)和燃料混合物中1-癸醇百分比的最佳值。结果表明,优化后的解决方案BMEP为4.91,1-癸醇百分比为9.82,显著提高了发动机性能并降低了排放。值得注意的是,BSFC降至0.29 kg/kWh,显示出能源效率。CO排放降至0.598 vol.%,NOx排放降至1509.91 ppm,HC排放降至29.52 vol.%。此外,优化过程产生了惊人的28.78%的制动热效率(BTE),表明发动机内热效率更高。ABC算法总体上提高了发动机性能并降低了排放,突出了目标加权组合所带来的有利权衡。该研究的结果为更可持续的内燃机实践做出了贡献,为升级发动机以实现更高效率和更低排放提供了关键见解,从而推动了可再生能源的发展目标。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验