Suppr超能文献

利用改进的人工智能通过溶解氧的日浓度预测水质。

Predicting water quality through daily concentration of dissolved oxygen using improved artificial intelligence.

作者信息

Yang Jiahao

机构信息

University of Cambridge, Cambridge, CB2 1TN, UK.

出版信息

Sci Rep. 2023 Nov 21;13(1):20370. doi: 10.1038/s41598-023-47060-5.

Abstract

As an important hydrological parameter, dissolved oxygen (DO) concentration is a well-accepted indicator of water quality. This study deals with introducing and evaluating four novel integrative methods for the prediction of DO. To this end, teaching-learning-based optimization (TLBO), sine cosine algorithm, water cycle algorithm (WCA), and electromagnetic field optimization (EFO) are appointed to train a commonly-used predictive system, namely multi-layer perceptron neural network (MLPNN). The records of a USGS station called Klamath River (Klamath County, Oregon) are used. First, the networks are fed by the data between October 01, 2014, and September 30, 2018. Later, their competency is assessed using the data belonging to the subsequent year (i.e., from October 01, 2018 to September 30, 2019). The reliability of all four models, as well as the superiority of the WCA-MLPNN, was revealed by mean absolute errors (MAEs of 0.9800, 1.1113, 0.9624, and 0.9783) in the training phase. The calculated Pearson correlation coefficients (Rs of 0.8785, 0.8587, 0.8762, and 0.8815) plus root mean square errors (RMSEs of 1.2980, 1.4493, 1.3096, and 1.2903) showed that the EFO-MLPNN and TLBO-MLPNN perform slightly better than WCA-MLPNN in the testing phase. Besides, analyzing the complexity and the optimization time pointed out the EFO-MLPNN as the most efficient tool for predicting the DO. In the end, a comparison with relevant previous literature indicated that the suggested models of this study provide accuracy improvement in machine learning-based DO modeling.

摘要

作为一个重要的水文参数,溶解氧(DO)浓度是一个公认的水质指标。本研究致力于介绍和评估四种用于预测溶解氧的新型综合方法。为此,采用基于教学学习的优化算法(TLBO)、正弦余弦算法、水循环算法(WCA)和电磁场优化算法(EFO)来训练一个常用的预测系统,即多层感知器神经网络(MLPNN)。使用了美国俄勒冈州克拉马斯县克拉马斯河一个美国地质调查局(USGS)站点的记录。首先,用2014年10月1日至2018年9月30日的数据对网络进行训练。之后,用接下来一年(即2018年10月1日至2019年9月30日)的数据评估其性能。在训练阶段,所有四个模型的可靠性以及WCA - MLPNN的优越性通过平均绝对误差(MAE分别为0.9800、1.1113、0.9624和0.9783)得以体现。计算得到的皮尔逊相关系数(R分别为0.8785、0.8587、0.8762和0.8815)以及均方根误差(RMSE分别为1.2980、1.4493、1.3096和1.2903)表明,在测试阶段,EFO - MLPNN和TLBO - MLPNN的表现略优于WCA - MLPNN。此外,对复杂度和优化时间的分析表明,EFO - MLPNN是预测溶解氧最有效的工具。最后,与之前的相关文献进行比较表明,本研究提出的模型在基于机器学习的溶解氧建模中提高了准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feae/10663494/47927ad1b594/41598_2023_47060_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验