Suppr超能文献

利用迁移学习对初级保健和二级保健界面中的真实宏观图像进行分类:对使用非皮肤镜图像开发人工智能解决方案的启示。

Classifying real-world macroscopic images in the primary-secondary care interface using transfer learning: implications for development of artificial intelligence solutions using nondermoscopic images.

机构信息

CVIP (Computer Vision and Image Processing), School of Science and Engineering, University of Dundee, Dundee, UK.

Department of Dermatology, Ninewells Hospital and Medical School, Dundee, UK.

出版信息

Clin Exp Dermatol. 2024 Jun 25;49(7):699-706. doi: 10.1093/ced/llad400.

Abstract

BACKGROUND

The application of deep learning (DL) to diagnostic dermatology has been the subject of numerous studies, with some reporting skin lesion classification performance on curated datasets comparable to that of experienced dermatologists. Most skin disease images encountered in clinical settings are macroscopic, without dermoscopic information, and exhibit considerable variability. Further research is necessary to determine the generalizability of DL algorithms across populations and acquisition settings.

OBJECTIVES

To assess the extent to which DL can generalize to nondermoscopic datasets acquired at the primary-secondary care interface in the National Health Service (NHS); to explore how to obtain a clinically satisfactory performance on nonstandardized, real-world local data without the availability of large diagnostically labelled local datasets; and to measure the impact of pretraining DL algorithms on external, public datasets.

METHODS

Diagnostic macroscopic image datasets were created from previous referrals from primary to secondary care. These included 2213 images referred from primary care practitioners in NHS Tayside and 1510 images from NHS Forth Valley acquired by medical photographers. Two further datasets with identical diagnostic labels were obtained from sources in the public domain, namely the International Skin Imaging Collaboration (ISIC) dermoscopic dataset and the SD-260 nondermoscopic dataset. DL algorithms, specifically EfficientNets and Self-attention with Window-wise Inner-product based Network (SWIN) transformers, were trained using data from each of these datasets. Algorithms were also fine-tuned on images from the NHS datasets after pretraining on different data combinations, including the larger public-domain datasets. Receiver operating characteristic curves and the area under such curves (AUC) were used to assess performance.

RESULTS

SWIN transformers tested on Forth Valley data had AUCs of 0.85 and 0.89 when trained on SD-260 and Forth Valley data, respectively. Training on SD-260 followed by fine tuning of Forth Valley data gave an AUC of 0.91. Similar effects of pretraining and tuning on local data were observed using Tayside data and EfficientNets. Pretraining on the larger dermoscopic image dataset (ISIC 2019) provided no additional benefit.

CONCLUSIONS

Pretraining on public macroscopic images followed by tuning to local data gave promising results. Further improvements are needed to afford deployment in real clinical pathways. Larger datasets local to the target domain might be expected to yield further improved performance.

摘要

背景

深度学习(DL)在诊断皮肤科中的应用已成为众多研究的主题,其中一些研究报告称,在经过整理的数据集上,皮肤病变分类的性能可与经验丰富的皮肤科医生相媲美。在临床环境中遇到的大多数皮肤疾病图像都是宏观的,没有皮肤镜信息,并且表现出相当大的可变性。需要进一步研究以确定 DL 算法在人群和采集环境中的通用性。

目的

评估 DL 可以在多大程度上推广到英国国家医疗服务体系(NHS)初级-二级保健界面采集的非皮肤镜数据集;探索如何在没有大量诊断标记本地数据集的情况下,从非标准化的真实世界本地数据中获得临床上令人满意的性能;并衡量对外部公共数据集进行预训练的 DL 算法的影响。

方法

从以前的初级保健向二级保健转诊中创建了诊断性宏观图像数据集。这些数据包括来自 NHS 泰赛德的 2213 张来自初级保健医生的图像和来自 NHS 福斯谷的由医疗摄影师拍摄的 1510 张图像。另外两个具有相同诊断标签的数据集来自公共领域的来源,即国际皮肤成像协作(ISIC)皮肤镜数据集和 SD-260 非皮肤镜数据集。使用来自这些数据集的数据训练了深度学习算法,特别是高效网络和基于窗口内积的网络(SWIN)转换器的自注意。在对不同数据组合(包括更大的公共领域数据集)进行预训练后,还对 NHS 数据集的图像进行了微调。使用接收者操作特征曲线和此类曲线下的面积(AUC)来评估性能。

结果

在对福斯谷数据进行测试时,SWIN 转换器在分别使用 SD-260 和福斯谷数据进行训练时的 AUC 分别为 0.85 和 0.89。在对 SD-260 进行预训练后,再对福斯谷数据进行微调,AUC 为 0.91。在使用泰赛德数据和高效网络时,观察到对本地数据进行预训练和调整的类似效果。在更大的皮肤镜图像数据集(ISIC 2019)上进行预训练没有带来额外的好处。

结论

在公共宏观图像上进行预训练,然后对本地数据进行调整,取得了有希望的结果。需要进一步改进,以便在实际临床途径中部署。在目标领域更本地化的更大数据集可能会带来进一步的改进性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验