Suppr超能文献

深度学习辅助检测软件提高肋骨骨折检测准确性和读片效率的临床评估

Improving rib fracture detection accuracy and reading efficiency with deep learning-based detection software: a clinical evaluation.

机构信息

Department of Radiology, Linyi Cancer Hospital, Shandong, China.

Clinical Research Center, Linyi People's Hospital, Shandong, China.

出版信息

Br J Radiol. 2021 Feb 1;94(1118):20200870. doi: 10.1259/bjr.20200870. Epub 2020 Dec 17.

Abstract

OBJECTIVES

To investigate the impact of deep learning (DL) on radiologists' detection accuracy and reading efficiency of rib fractures on CT.

METHODS

Blunt chest trauma patients ( = 198) undergoing thin-slice CT were enrolled. Images were read by two radiologists (R1, R2) in three sessions: S1, unassisted reading; S2, assisted by DL as the concurrent reader; S3, DL as the second reader. The fractures detected by the readers and total reading time were documented. The reference standard for rib fractures was established by an expert panel. The sensitivity and false-positives per scan were calculated and compared among S1, S2, and S3.

RESULTS

The reference standard identified 865 fractures on 713 ribs (102 patients) The sensitivity of S1, S2, and S3 was 82.8, 88.9, and 88.7% for R1, and 83.9, 88.7, and 88.8% for R2, respectively. The sensitivity of S2 and S3 was significantly higher compared to S1 for both readers (all < 0.05). The sensitivity between S2 and S3 did not differ significantly (both > 0.9). The false-positive per scan had no difference between sessions for R1 ( = 0.24) but was lower for S2 and S3 than S1 for R2 (both < 0.05). Reading time decreased by 36% (R1) and 34% (R2) in S2 compared to S1.

CONCLUSIONS

Using DL as a concurrent reader can improve the detection accuracy and reading efficiency for rib fracture.

ADVANCES IN KNOWLEDGE

DL can be integrated into the radiology workflow to improve the accuracy and reading efficiency of CT rib fracture detection.

摘要

目的

研究深度学习(DL)对 CT 上肋骨骨折放射科医生检测准确性和阅读效率的影响。

方法

纳入行薄层 CT 检查的钝性胸部创伤患者(n = 198)。图像由两位放射科医生(R1、R2)在三个阶段进行阅读:S1,无辅助阅读;S2,DL 作为同时阅读者辅助阅读;S3,DL 作为第二阅读者阅读。记录读者检测到的骨折和总阅读时间。肋骨骨折的参考标准由专家组建立。比较 S1、S2 和 S3 的扫描灵敏度和假阳性率。

结果

参考标准确定了 713 根肋骨(102 例患者)上的 865 处骨折。S1、S2 和 S3 的 R1 灵敏度分别为 82.8%、88.9%和 88.7%,R2 分别为 83.9%、88.7%和 88.8%。S2 和 S3 的灵敏度均明显高于 S1(均<0.05)。S2 和 S3 之间的灵敏度无显著差异(均>0.9)。R1 各阶段的假阳性率无差异(=0.24),但 R2 的 S2 和 S3 低于 S1(均<0.05)。与 S1 相比,S2 阅读时间减少了 36%(R1)和 34%(R2)。

结论

将 DL 作为同时阅读者可提高肋骨骨折的检测准确性和阅读效率。

知识进步

DL 可集成到放射科工作流程中,提高 CT 肋骨骨折检测的准确性和阅读效率。

相似文献

引用本文的文献

本文引用的文献

5
Predictors of mortality in patients with rib fractures.肋骨骨折患者死亡率的预测因素
Eur J Trauma Emerg Surg. 2021 Oct;47(5):1527-1534. doi: 10.1007/s00068-019-01183-5. Epub 2019 Jul 19.
9
ACR Appropriateness Criteria Rib Fractures.美国放射学会肋骨骨折适宜性标准
J Am Coll Radiol. 2019 May;16(5S):S227-S234. doi: 10.1016/j.jacr.2019.02.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验