Suppr超能文献

应用高光谱成像和 CycleGAN 模拟窄带技术探测早期食管癌的评估。

Assessment of hyperspectral imaging and CycleGAN-simulated narrowband techniques to detect early esophageal cancer.

机构信息

Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st Rd., Lingya District, Kaohsiung, 80284, Taiwan.

Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, 62102, Chiayi, Taiwan.

出版信息

Sci Rep. 2023 Nov 22;13(1):20502. doi: 10.1038/s41598-023-47833-y.

Abstract

The clinical signs and symptoms of esophageal cancer (EC) are often not discernible until the intermediate or advanced phases. The detection of EC in advanced stages significantly decreases the survival rate to below 20%. This study conducts a comparative analysis of the efficacy of several imaging techniques, including white light image (WLI), narrowband imaging (NBI), cycle-consistent adversarial network simulated narrowband image (CNBI), and hyperspectral imaging simulated narrowband image (HNBI), in the early detection of esophageal cancer (EC). In conjunction with Kaohsiung Armed Forces General Hospital, a dataset consisting of 1000 EC pictures was used, including 500 images captured using WLI and 500 images captured using NBI. The CycleGAN model was used to generate the CNBI dataset. Additionally, a novel method for HSI imaging was created with the objective of generating HNBI pictures. The evaluation of the efficacy of these four picture types in early detection of EC was conducted using three indicators: CIEDE2000, entropy, and the structural similarity index measure (SSIM). Results of the CIEDE2000, entropy, and SSIM analyses suggest that using CycleGAN to generate CNBI images and HSI model for creating HNBI images is superior in detecting early esophageal cancer compared to the use of conventional WLI and NBI techniques.

摘要

食管癌(EC)的临床症状和体征通常在中晚期才明显。在晚期发现的 EC 显著降低了生存率,使其低于 20%。本研究对几种成像技术(包括白光成像(WLI)、窄带成像(NBI)、循环一致性对抗网络模拟窄带图像(CNBI)和高光谱成像模拟窄带图像(HNBI))在早期检测食管癌(EC)的效果进行了比较分析。本研究与高雄总医院合作,使用了一个包含 1000 张 EC 图片的数据集,其中包括 500 张 WLI 拍摄的图片和 500 张 NBI 拍摄的图片。使用 CycleGAN 模型生成了 CNBI 数据集。此外,还创建了一种新的 HSI 成像方法,旨在生成 HNBI 图片。使用 CIEDE2000、熵和结构相似性指数度量(SSIM)三个指标评估这四种图片类型在早期检测 EC 中的效果。CIEDE2000、熵和 SSIM 分析的结果表明,与传统的 WLI 和 NBI 技术相比,使用 CycleGAN 生成 CNBI 图像和 HSI 模型创建 HNBI 图像在检测早期食管癌方面更具优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf3f/10665456/237fba5b3472/41598_2023_47833_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验