Hemedan Ahmed Abdelmonem, Schneider Reinhard, Ostaszewski Marek
Bioinformatics core unit, Luxembourg Centre for Systems Biomedicine , University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Front Bioinform. 2023 Jun 1;3:1189723. doi: 10.3389/fbinf.2023.1189723. eCollection 2023.
Computational modeling has emerged as a critical tool in investigating the complex molecular processes involved in biological systems and diseases. In this study, we apply Boolean modeling to uncover the molecular mechanisms underlying Parkinson's disease (PD), one of the most prevalent neurodegenerative disorders. Our approach is based on the PD-map, a comprehensive molecular interaction diagram that captures the key mechanisms involved in the initiation and progression of PD. Using Boolean modeling, we aim to gain a deeper understanding of the disease dynamics, identify potential drug targets, and simulate the response to treatments. Our analysis demonstrates the effectiveness of this approach in uncovering the intricacies of PD. Our results confirm existing knowledge about the disease and provide valuable insights into the underlying mechanisms, ultimately suggesting potential targets for therapeutic intervention. Moreover, our approach allows us to parametrize the models based on omics data for further disease stratification. Our study highlights the value of computational modeling in advancing our understanding of complex biological systems and diseases, emphasizing the importance of continued research in this field. Furthermore, our findings have potential implications for the development of novel therapies for PD, which is a pressing public health concern. Overall, this study represents a significant step forward in the application of computational modeling to the investigation of neurodegenerative diseases, and underscores the power of interdisciplinary approaches in tackling challenging biomedical problems.
计算建模已成为研究生物系统和疾病中复杂分子过程的关键工具。在本研究中,我们应用布尔建模来揭示帕金森病(PD)——最常见的神经退行性疾病之一——背后的分子机制。我们的方法基于PD图谱,这是一个全面的分子相互作用图,它捕捉了PD发病和进展过程中的关键机制。使用布尔建模,我们旨在更深入地了解疾病动态,识别潜在的药物靶点,并模拟对治疗的反应。我们的分析证明了这种方法在揭示PD复杂性方面的有效性。我们的结果证实了关于该疾病的现有知识,并为潜在机制提供了有价值的见解,最终提出了治疗干预的潜在靶点。此外,我们的方法使我们能够基于组学数据对模型进行参数化,以进一步对疾病进行分层。我们的研究强调了计算建模在增进我们对复杂生物系统和疾病理解方面的价值,强调了该领域持续研究的重要性。此外,我们的发现对PD新型疗法的开发具有潜在意义,这是一个紧迫的公共卫生问题。总体而言,这项研究代表了在将计算建模应用于神经退行性疾病研究方面向前迈出的重要一步,并强调了跨学科方法在解决具有挑战性的生物医学问题方面的力量。